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Z-Transform 

1- Basic Definition of the Z-Transform: 
      The z-transform of a function x(n) is defined as: 


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  So we can write that X(z) =     {x(n)}   

There is a close relationship between the z-transform and the Fourier transform of a 

discrete-time response h(n), which is defined as 







n

jnwjw enheH )()( 

The z-plane is a complex plane with an imaginary and 
 real axis referring to the complex-valued variable z. 
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2- Region of Convergence: 

The ROC for a given x(n) , is defined as the range of z for which the z-transform 

converges. 

Example- 1: Find z-transform of )()( nuanx n   for 0 < a < 1 ? 

Solution: The z-transform is given by 
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Next: Another ROC example 

jez  

 

The power series for the z-transform is called a Laurent series: 
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Example- 2: Find z-transform of   x (n) = -b 
n
 u (-n – 1) 

 

Solution: The z-transform is given by 
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The ROC in this case is the range of values where 
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Example- 3:  x(n) = a
n
u(n) – b

n
 u(-n – 1) 

Solution: Using the results of Examples 1 and 2,  
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-Common area exist  

for bn < a  & a = b  (ROC rings )  

  

and  for b < a (no ROC).  

 

 

 
 
 
3- Z-Transform properties: 
 Linearity: if x1(n)           X1(z)                                        

            and  x2(n)           X2(z)                                              
Then for a1 & a2 constants  

a1 x1(n) + a2 x2(n)             a1 X1(z) +a2 X2(z); 
 ROCt = ROCx1    ∩    ROCx2  

The ROC for x(n) is the intersection of the circle   

ibez   and the circle 

iaez   as shown in Figure

  

bz  
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 Uniqueness: if x1(n)            X1(z)                                     

                 and  x2(n)            X2(z)                                            

if   x1(n)  ≠  x2(n)  then  X1(z) ≠ X2(z)  

 Time Shifting: if x(n)            X(z) 

      Then     x(n - n0)             
    X(z);      

 Multiplication by an Exponential Sequence: 
            if x(n)           X(z)  

 Then an
 x(n)          X(z) with z  z/a;                     

ROC= |a|. ROCx , so if rL < ROCx <rU                         

|a|. rL < |a| ROCx <|a| rU                                                      

|a|. rL < ROC  <|a| rU  
  Multiplication by ramp: 
              if x(n)            X(z) 

  Then n x(n)           - z {d X(z) / dz}; 

 ROC: ROCx except for the possible addition or deletion of the origin or infinity.  

 Time Reversal: 

        if x(n)           X(z) 
Then  x(-n)           X(1/z);  

  ROC: 1/ROCx 

 
4- Some Common z-Transform Pairs: 
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Example- 4:  Find z-transform of  
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5- Poles and Zeros 
 
When H(z) is a rational function, i.e., a ration of polynomials in z, then: 

 The roots of the numerator polynomial are referred to as the zeros 
of H(z), and 

 The roots of the denominator 
polynomial are referred to as the 
poles of H(z). 

Example- 5: For the response 

 

 

 
Zeros 
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6- The Inverse Z-Transform 

• Less formal ways sufficient most of the time 

– Inspection Method 

– Partial Fraction Expansion 

– Power Series Expansion 

 Inspection Method 

– Make use of known z-transform pairs such as 

 

 Inverse Z-Transform by Partial Fraction Expansion: 
• Assume that a given z-transform can be expressed as 

 
 
 

 
• Apply partial fractional expansion  
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• First term exist only if  M > N 
– Br is obtained by long division 

• Second term represents all first order poles 
• Third term represents an order s pole  

– There will be a similar term for every high-order pole  

• Each term can be inverse transformed by inspection 
 
 
 
 

• Coefficients are given as 
 
 
 
 
 
Easier to understand with the following examples: 

Example- 6: Find the inverse Z-Transform of 
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7-Properties of ROC of the Z-Transform 

 
• ROC is a ring or disk centered at the origin. 

• Fourier transform converges absolutely if ROC includes the unit circle. 

• ROC contains no poles but is bounded by poles. 

• If the sequence is finite in length, ROC is the Entire z-plane                      

    except possibly z = 0 and z = ∞. 

• If the sequence is right-sided, ROC is an outer disk. 

• If the sequence is left-sided, ROC is an inner disk. 

• If the sequence is double-sided, ROC is a ring. 

• ROC is a connected region. 
 
 
Example- 7: Find the inverse Z-Transform of 
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Example- 8: find the inverse Z-Transform of 

 

 

- Order of numerator is smaller than denominator (in terms of z-1)  

- No higher order poles 

 

 

 

                                                                                    and 

 

 

 

 

 

• ROC extends to infinity, - Indicates right sided sequences 

 

 
Example- 9: Find the inverse Z-Transform of 
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• Long division to obtain Bo 

 

 

 

                                                                            or                  

                                                                           

 

  

 

 

• ROC extends to infinity, Indicates right-sides sequence 

 

 
8- Relationships between System Representations: 
     

 
 
Relationships between difference equation, system function, impulse 
response, and frequency response for stable causal systems represented 
by linear, constant coefficient difference equation. 
 
 
Example- 10: Using Z-Transform, find the solution (for      ) to the following 

linear constant coefficient difference equation: 
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Solution: Taking the Z-transform of both sides gives 
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Substituting in the initial conditions and rearranging gives 
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And dividing by 0  
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By partial fraction expansion, we can write  
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Taking the inverse z-transform, the difference equation is  

 ( )  6
 

 
(
 

 
*
 

 (
 

 
*
 

 
 

 
7  ( ) 

H.W: Try to solve it in time domain and compare the results. 

 

 

Example- 11: Given that  ( )   
(   )

(       )
 Represents a causal system, find a 

difference equation realization and the frequency response of the system. 

 

 

Solution: Since the system is causal, first write H(z) in terms of negative power of z 
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Now Cross Multiply:  
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Taking the inverse transform yields the following difference equation: 
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The frequency response can be obtained by letting       becomes 
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DIGITAL FILTER DESIGN 
  
Methods Of System Representation: 
 

1-Difference equation realization: 
  

 
 
 

2-Transfer function: 
 

 
 
 

If ao=1  & other ak's=0, then the filter is FIR, otherwise it is IIR. 
 

3-The impulse response: 
 

h(n) =         { H(z)}    
 

Digital Filter Specifications 
 
 

1-Frequency Response 

a-attenuation in pass band and stop band 

b-cutoff frequency and roll off frequencies. 

 

2- The magnitude and/or the phase (delay) response are specified for 

the design of a digital filter for most applications. 

• In some situations, the unit sample response or the step response 

may be specified. 

• In most practical applications, the problem of interest is the 

development of a realizable approximation to a given magnitude 

response specification 

3- Phase response can be corrected by cascading the filter with an all-

pass section!!! 
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For example, the magnitude response  jeH  of a digital lowpass 

filter may be given as indicated below 

 

• As a result, filter specifications are given only for the frequency range 0≤ ω ≤ π 

To SIMULATE an analog filter, a discrete-time filter  H(z) is used in the 
analog – to digital – H(z) – digital – to – analog structure shown in Fig. 2.  

 
 

 

 
Equivalent analog filter 

 
Fig. 2 Simulation of an analog filter 

 
 

IIR FILTER DESIGN: 
 

 Several different techniques for designing H(z). 

1- Numerical  Methods. 

2- Biliner  Transformation  Method . 

3- Impulse-Invariant  Method. 

 

 
 

H(z) 
Discrete time filter 
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1- THE DESIGN BY USING NUMERICAL SOLUTIONS OF 
DIFFERNTIAL EQUATIONS: 
 
Simulates a continuous-time linear filter specified by the following 
differential equation: 

∑  

 

   

     ( )

   
 ∑  

 

   

     ( )

   
 

This filter has input xa(t)  and output ya(t)  and can be characterized 
by its system function Ha(s) by taking the Laplace transform  
 

    ( )  
∑    

  
   

∑    
  

   

 

Suppose that we approximate the derivatives by backward differences. 

The first backward difference  ( ), -  is defined by  
 

 ( ), ( )- 
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Higher-order  backward difference  are found by 
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Using the kth-order differences as approximations to the derivatives in 

Eq.(4-4) we have 
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The above equation represents a numerical approach for obtaining  

  (  ), the sampled version of   ( ). The Z-transform of the first 

and k
th

-order difference are given below: 
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The Z-transform of both sides 

∑  
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The transfer function is easily seen to be: 
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 ( )  
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∑   
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∑   
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Comparing with the Equation of   ( ), we see that H(z) can 

be obtaind by replacing  S  by (     )   , that is 

  
     

 
               

 

    
 

As the frequency response for the analog system is 
obtained by letting s = j Ω , it is of interest to look at the 
image in the z-plane of the j Ω axis of the s-plane which is 

 

  
 

     
 

 

      
  

  

      
      

 
 
 
 
 
 
 
 
 
 
 

 
In the above figure, the image of the jΩ axis of the s-plane in the z-plane 

for the mapping     
 

    
 is shown  

It is easy to see that x (the real part of z) and y (the imaginary part of z) 

are related by 

        

Completing the square in  the above equation gives the following 

equation: 

 

(     )         

Thus, the image in the z-plane of the jΩ axis of the S-plane is a circle of 

radius 1/2 , as shown in the figure. 
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The frequency response of the digital filter is obtained by evaluating 

H(z) on the unit circle,      . The shape of the equivalent 

frequency response of the H(z) would not be similar to that of   ( ). 

To preserve the shape of the frequency response, we like to have the 

transformation from analog filter to digital filter take the jΩ axis of 

the s-plane into the unit circle in z-plane. 

 

 
 
Example -1: An analog filter with system function  

                                            ( )  
 

(   )(   )
   , 

a- Find the H(z) using numerical method   

b- Plot the frequency response for fs = 5 bps? 
Solution: 
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By numerical  method 
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b-  fs = 5 bps,           
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H.W.: Suppose we are given the following differential equation: 

 

∑  

 

   

     ( )

   
 ∑  

 

   

     ( )

   
 

The first forward difference  ( ), ( )-  is defined by  

 ( ), ( )-  
, (   )   ( )-

 
 

and the n
th

  forward difference  is obtained  by successive first forward 

differences. 

(a)-  Find the mapping from the s-plane to the z-plane necessary to obtain 

the digital transfer function directly from the analog transfer function. 

(b)- Using such transformation, find the z-plane image of s = jΩ as Ω goes 

from          . 

Solution: 

(a)- The z-transform of the first forward difference is given by 
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The z-transform of the k
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Using the k

th
 - order forward differences as approximations to the derivatives in the 

given differential equation, we have 
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The z-transform of  both sides 
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The transfer function is easily seen to be 
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Using Laplace transform on the given differential equation, we can write  
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Comparing  the above  to equations we see that  the mapping from the     

s-plane to z-plane is 

  
   

 
               

 
(b)- for s  = jΩ  as Ω goes from          . 

  
   

 
                   and for  s = jΩ, we get               

The locus of points in the z-plane as    varies is shown below  

 
 
2- IIR FILTER DESIGN BY BILINEAR TRANSFORMATION  
 
Design Concept:- Using a first-order differential equation  

 

     
 ( )      ( )    x(t)                                  …………….(1)   

 

The transfer function Ha(s) can be written as 

  ( )  
  

       
                                                              ( ) 

The fundamental  theorem of integral calculus allows us to write  

 

  ( )  ∫  
 ( )     (  )                      ( )

 

  

 

Since Eq.(3) holds for any t with any t0  , we let t = nT  and   t0 = (n-1)T       

to get  

  (  )  ∫   
 ( )      ,(   ) -        ( )

  

(   ) 
 

 

 

Using the trapezoidal rule 
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To approximate the integral and by assuming equality, a recursive 

relationship for determining   (  ) can be found from Eq. (4) as follows: 

  (  )    ,(   ) -  (
 

 
* *  

 (  )    
 ,(   ) -+   ( ) 

From Eq. (2)  

  
 ( )   

  
   
  ( )  

  
   
 ( )                    ( ) 

Now the differential equation evaluated in t = nT:  

 

  
 (  )   

  
   
  (  )  

  
   
 (  )       ( ) 

& 

   
 ((   ) )   

  

   
  ((   ) )  

  

   
 ((   ) )   ( ) 

Substitute (7) & (8) into (5) to obtain a difference equation for the 

equivalent discrete-time system. Then  

  (  )    (
 

 
* { 

  
   
  (  )  

  
   
 (  )  

  
   
  ((   ) )

 
  
   
 ((   ) )}    ,(   ) - 

The previous expression can be expressed in the following form 

(  
     
    

*   (  )  (  
     
    

*   ((   ) ) 

                                                                     
   
    

{ (  )   ((   ) )} 

The z-transform of  the previous equation is 

(  
     
    

* ( )  (  
     
    

)    ( )  
   
    

* ( )      ( )+ 

Transfer function of the equivalent digital filter is 

                                                     ( )   
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 ( )  

   
    

(     )
(      )

 
     
    

            ( )  
  

    
 (     )
 (      )

     

 

 

Comparing Ha(s) of Eq. (2) and H(z) it can be seen that H(z) can be 

obtained from Ha(s) by using the following mapping relation:  

                     
 

 

(     )

(      )
      or       

  
  

  

  
  

  

   …….(18) 

This is the bilinear transformation. The image of the jΩ axis from the s-

plane in the z-plane is  shown in the Figure below. The bilinear 

transformation given in Eq.(18) has the following properties: 

(1)- The entire jΩ axis of the s-plane goes into the unit circle of the z-plane. 

(2)- The left half side of the s-plane is transformed inside the uint  circle of 

the z-plane. 

 

 
The image in the z-plane of the jΩ axis of the s-plane for the mapping 

   
  

  

  

  
  

  

   

Therefore a stable analog filter would be transformed into a stable 
digital filter. While the frequency responses of analog filter and 
digital filter have the same amplitudes. There is a nonlinear 
relationship between corresponding digital and analog frequencies.   

If s = jΩ,              then    
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 Nonlinear mapping introduces a distortion in the frequency 
axis called frequency warping seethe following Figure: 
 

 
 
The digital frequency will have a critical frequency    given by 

       
  (     ). The equivalent critical frequency becomes   

      
 

 
     (     ) 

WHICH WILL GIVE         ONLY IF  

(     ) is small that      (     ) is approximately equal to (     ) 
 
This warping of the critical frequency will be compensated for in the 

design procedure using the bilinear transformation by prewarping. 
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* IIR Filter Design Procedure 

 
 
 

 
 

TABLE 3-2 

TABLE 3.1 
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 Example (LP Butterworth Filter) 
 
Design and realize a digital low-pass filter using the bilinear 
transformation method to satisfy the following characteristics: 

(a) Monotonic stopband and passband(Butterworth Filter). 
(b)  -3.01dB cutoff frequency of 0.5  rad. 
(c)  Magnitude down at least 15 dB  at 0.75   rad. 
 
Solution:- 
The design procedure is that of using the bilinear 
transformation on an analog prototype and consists of the 
following steps: 
Step1. Prewarp the critical digital frequencies 
                         using T=1 sec to get 
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      2 

 
Step2. Design an analog low-pass filter with  critical  
frequencies   

   and   
   that satisfy  

 

        |  (   
 )|               

 

      |  (   
 )|             

 
A Butterwirth filter  is used to satisfy the  monotonic 
property and has an order   and critical  frequency    
Determined  by the following equations : 
 

  ⌈
     [(  

        ) (          )]

      (     )
⌉ 

 
 

      (  
        )

    
 

 
We get  

  ⌈
     [(  

         ) (         )]

      .
 

      /
⌉           

 
 

     (  
         )

   
   

Therefore the required prewarped analog filter using the 
Butterworth Table 3.1 and low-pass to low pass 
transformation from table 3.2 is 
 
 

  ( )  
 

   √    
|
     

 
 

(   )  √ (   )   
 

 

    √    
 

 
Step3. Applying the bilinear transformation method(T=1) to 
satisfy the given digital requirements: 

 ( )    ( )|
  6

 (     )

(     )
7
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[
 (     )
(     )

]
 

  √ [
 (     )
(     )

]   

 

 

 ( )  
          

             
 

 
This digital filter can be realized by specification of a 
difference equation obtained from the transfer function  
H(z) given by  
 

 ( )  
 ( )

 ( )
 
          

             
 

Cross multiplying gives: 
 

 ( ),             -   ( ),          - 
 
And taking the inverse Z-transform we find 
 
,     ( )        (   )-  , ( )    (   )   (   )- 

 
 
By rearranging and scaling. y(n) can be  realized by the 
following difference equation: 
 
 ( )       , ( )    (   )   (   )-        (   ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

z-1 

z-1 

z-1 

z-1 

-0.172 

2 

x(n) y(n) 
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 Example (BP   Butterworth Filter) 
 
Design a digital band-pass filter representing an analog one with 
the following specifications: 

(a)  Stop band attenuation of at least 20dB at warpped 
frequencies of 20Hz and 45kHz. 

(b)  -3 dB lower and upper cutoff bilinear warpped  
frequencies of 50Hz and 20kHz. 

(c)  a monotonic frequencies. 
 
Solution:- 
The desired frequency response is shown on the right 
 
 

 
 
From table (3.2) we see 

     (  )        
   

   
 

     (  )         
   

   
 

     (     )        
   

   
 

     (     )        
   

   
 

 
                            

The Backward equation then gives the      for a normalized 
Low pass prototype. 
 

         ,(| |) (| |)  - 
 
From table (3.2) USING (                             )we see 
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(   

            )

,       (         -
    

(   
            )

,       (         -
        

 
A=2.5053,     B=2.2545 
The most critical value       is the minimum of the two, that 
is,         ,(| |) (| |)  -=2.2545 

 
The low-pass  Butterworth filter  of order          can then be 
easily calculated  from  the following equations : 
 

  ⌈
     [(  

        ) (          )]

      (    )
⌉ 

 
 

 
We get  

  ⌈
     [(  

       ) (         )]

      .
 

      
/

⌉  ⌈     ⌉    

 
from the Butterworth Table 3.1b and  n=3 we have the low-
pass prototype as 

    
 

           
 

 
 
The required analog-to-analog transformation (table 3.2) is 
determined from                 as  
 

  6
(           )

 (         )
7  

           

 (        )
 

 
   ( ) then is finlly seen to be  
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Applying the bilinear transformation method(T=1) to satisfy 
the given digital requirements: 

 ( )     ( )|
  6

 (     )

(     )
7
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  (     )
(     ) ]
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  (     )
(     ) ]

 
 
 
 

           

 

 

Example (HP  Butterworth Filter) 
 
Design a digital filter representing an analog one with the 
following specifications: 

(a)  Pass all signals of bilinear warpped  frequencies greater 
than 200rad/sec with no more than 2dB of attenuation. 

(b)  Stop band attenuation of greater than -20 dB at warpped d  
frequencies less than 100rad/sec. 

(c)  a maximally flat IIR response. 
 
Solution:- 
The desired frequency response is shown on the right 
 
 

 
 
From table (3.2) we see 

      
   

   
      

     
   

   
 

 
                            

The Backward equation then gives the      for a normalized 
Low pass prototype. 
 
              

 =200/100=2 
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The low-pass  Butterworth filter now has the following 
specifications 

                   
 

                          
 
The order   of the filter is determined as follows  
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We get  

  ⌈
     [(  

      ) (         )]

      .
 
 /

⌉  ⌈   ⌉    

 

   
  

(   
  
    *

 
  

 
 

(  
 
    *

 
 

       

 
 
from  the  Butterworth Table 3.1b  and  n=4 we have the 
NORMALIZED low-pass filter as 

   
 

(           ) (          )
 

 

The low-pass filter prototype 
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To get desired HPF apply LP TO HP( analog-to-analog 
transformation (table 3.2))  
 

    ( )     ( )⌉  0  
 
1      

 

 
 
   ( ) then is finlly seen to be  
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Applying the bilinear transformation method(T=1) to satisfy 
the given digital requirements: 
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Example (  Chebyshev LPF) 
Design a Chebyshev LPF representing an analog one with the 
following specifications: 

(a)  Acceptable pass-band ripples of 2dB. 
(b)  Cut off frequency of 40 rad/sec. 
(c)  Stop band attenuation of 20 dB or more at 52 rad/sec. 
Solution:- 
The desired frequency response is shown on the right 

 
 
 
 
 
 
 
 
 
 
 
 
 
The general approach is to first change the requirements to 
those of a low-pass unit bandwidth PROTOTYPE,  design 
such a LPF ,  and then apply a LP to LP Transformation to 
that PROTOTYPE. 
From table (3.2) we see 
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odd
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The Backward equation then gives the      for a normalized 
Low pass prototype. 
 
              

 =52/40=1.3 rad. /sec 
   
The low-pass  filter now has the following specifications 
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                           (
 

 
*        

   
 

The low-pass  Chebyshev filter  of order          can then be 
easily calculated  from  the following equations : 
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 Using the 2dB ripple part of Table 3.4 
 

  ( )  
  
  ( )

                 {

  

(    )
 
 

                    

            

  

 
  

  ( )    
       

         
     

for n=5, and the fact that since n is odd, we have the desired 
Chebyshev unit bandwidth low-pass filter as  
 
 

  ( )  
  

      
     

     
     

    
 

 
   ( )   ( )⌋      

 
  

(    )    (    )
    (    )

    (    )
    (    )

    
 

 
 
 

   ( )    ( )⌋   (   
   

)
 

 
 
 
 
 
 
 
 
 

(H.W) 
Design a digital filter having a 1-dB cut off frequency at 75 Hz 
and greater than   20-dB attenuation  for        . Find H(z) that 
will satisfy the above prewarpped specifications for  : 

(a) Butterworth . 
(b) Chebyshev approximations. 
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3.IIR Filter Design by Impulse Invariant  Method  
  
 

 ( )
           
↔         ( )

    
↔   ( )

           
↔          ( ) 

 
Example  
Find the H(z) corresponding to the impulse invariant design a 
sample rate of 1/T samples/sec. for an analog filter Ha(s) 
specified as follows: 
 

  ( )  
 

(   )
 

Solution: 
The analog system's impulse invariant response is obtained 
by taking the inverse Laplace transform of Ha(s) to give ha(t) 
as 

  ( )    
    ( ) 

 
The corresponding h(n) is then given by  

 ( )         (  )   (    )  ( ) 
 
And therefore the discrete-time filter has the following Z-
transform 
 
  

 ( )   , ( )-   , (    )  ( )-  
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FIR Filter Design 

  In the previous sections, digital filters were designed to give 
a desired frequency response magnitude without regard to 
the phase response. In many cases a linear phase 
characteristic is required throughout the pass-band of the 
filter to preserve the shape of a given signal within the pass-
band.  
Assume  a filter with frequency response  
 

  (   )  | (   )|     ( 
  ) 

 
 

 (   )                           (  ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Why linear phase filter ? 
 
The linear phase filter did not alter the shape of 
original signal, simply translated it by an amount        . 
If the phase response had not been liner , the output 
signal would have been a distorted version . 
 
In Fig.4.11 the responses of two different filters to the 
same input( a sum of two sinusoidal signals) is 
presented. The filters have the same magnitude 
frequency response but differ in their phases as one 
has linear and the other a quadratic phase. For the 
filter with liner phase, the sinusoidal components 
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each  go through a steady state phase change, but in 
such a way that the output signal is just a delayed 
version of the input while the quadratic phase filter 
causes phase shifts in the two sinusoidal signals 
resulting in an output that is a distorted version of 
the input signal. 
       It can be shown that a casual IIR filter cannot 
produce a linear phase characteristic and that only 
special forms of casual FIR filters can give linear 
phase. This result is clarified in the following 
theorem. 
 
Theorem :  If h(n) represents the impulse response of 
a discrete-time system, a necessary and sufficient 
condition for linear phase is that h(n) have finite 
duration N, and that it by symmetric about its 
midpoint. 
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THE DESIGN Concept:-  

   For a casual FIR filter whose impulse response 

begins at zero ends at (N-1) , h(n) must satisfy the 

following: 

h(0)=h(N-1)     & 

h(n)=h(N-1-n)    ……for n=0,1,2,……,N-1 

for this condition the general shapes of h(n) that give liner phase. 

 (   )  ∑ ( )

 

  

        

 

 (   )  ∑ ( )

   

 

        

for N an even number.  The summation can be broken into 

two parts as follows: 
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        ∑  ( )

   

     

        

 
Letting m=N-1-n ( n=N-1-m) in the second sum gives  
 
 

∑  ( )

   

     

        ∑  (     )

 

  
 
 
  

      (     ) 

But    (     )   ( ), and the summation can be 
reversed to give   
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Combining yields  
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By factoring we are able to separate  (   ) into two part 
as follows: 
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              Linear phase       Magnitude 
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There for, if the sum remains positive,  (   )  has a 

linear phase with slope  .
   

 
 / , for N an odd number , 

a similar derivation leads to  
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DESIGN  of FIR  filters using windows: 

  The easiest way to obtain an FIR filter is to simply truncate 

the impulse response of an IIR filter . If   ( )  represents  the 

impulse response of a desired IIR filter, then an FIR filter with 

impulse response h(n)  can be obtained as follows: 

   ( )  {
   ( )                              

                               
 

 

 In general,  ( )  can be thought  of as being formed by the 

product of        ( )   and a " Window function"  ( )  , as 

follows:      

 ( )           ( )  ( ) 
 
The frequency response of the resulting filter is the 
convolution of   
 

 (   )          (   )   (   ) 
 
For example, if        ( 

  )  represents an ideal low-pass 
filter with cutoff frequency     and  ( ) is a 
rectangular window positional about the origin, the 
 (   ) is shown blow  
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DESIGN PROCEDURE:- 
    
   An ideal low-pass filter with linear phase of slope 

–  and cutoff    can be characterized in the 
frequency domain by  
 
 
 

  ( 
  )  {

                                                          | |    
                                       |  |    | |    

 

 
Taking the inverse Fourier transform 
 

        ( )  
   ,  (   )-

 (   )
 

 
A casual FIR filter  with impulse response  ( )  can be 
obtained by multiplying        ( )  by a window 
beginning at the origin and ending at N-1 as follows: 
   

 ( )   
   ,  (   )-

 (   )
 ( ) 

 

 For h(n) to be a linear phase filter,   must be 
selected so that the resulting h(n) is symmetric . 

 As 
   ,  (   )-

 (   )
 is symmetric about n=   and the 

window symmetric about n=(N-1)/2  , a linear phase 
filter results if the product is symmetric . This 
requires that 

  (   )   
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Some of the most commonly used windows are the 
rectangular, Bartlett, Hanning, Hamming, Blackman, and 
Kaiser windows. These are defined mathematically as 
follows: 

Rectangular:        ( )  2
                                   
                                

 

 
 

Bartlett:             ( )  {

  

   
               (   )  

    

   
           (   )     (   )

                                              

 

Hanning :             ( )  {
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13

 
                               

                                

 

 
 

Hamming:       

    ( )  8
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Where   ( ) is the modified zero order Bessel function of the first kind given by  
 

  ( )   ∫     (     )    (  )

  

 

 

 
 
Plots of the windows and their Fourier transform magnitudes (in decibels) are 
shown in Fig 4.14 for N=51. 
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Design table for FIR low-pass filter design 

Window type Transition width Minimum stop-
band attenuation 

K 

Rectangular      -21dB 2 

Bartlett      -25dB 4 

Hanning      -44dB 4 

Hamming      -53dB 4 

Blackman       -74dB 6 

Kaiser Variable   

 
This table although a crude approximation may be used to design a FIR LPF 
from (k1, k2,  w1,w2 )  , the following example describe this technique  : 
 
Example :- Design a low-pass digital filter to be used in an { A/D- H(z)- D/A} 
structure that will have a -3dB cutoff of     rad./sec and an attenuation of 50dB  

at     rad./sec. The  filter is required to have linear phase and the system will 
use a sampling rate of 100 samples/sec. 
 
Solution:- 
 The digital specifications obtained are as follows: 
 

             (    )                                           
 

             (    )                                             
 
Step 1-  To obtain a stop-band attenuation of – 50dB  or more,( from the above 
table )  a Hamming,  Blackman, or Kaiser window could be used. The Hamming 
window is chosen  (k=4) 
Step 2-   The approximate number of points needed to satisfy the transition 
band requirement  can be found for 
            

        (       )        (            )       
To obtain an integer delay the next odd number (N=55) is selected. 
 
Step 3-   select the liner phase of slope    and cutoff  
 

                              
 

  
   

 
    

Thus giving a trial impulse response   for a  window as  
 

 ( )   
   ,  (   )-

 (   )
 ( ) 

For Hamming window  ( )                   0
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Example (  Chebyshev HPF) 
Design a Chebyshev  digital filter representing an analog one 
with the following specifications: 

(a)  Pass all signals of bilinear warpped  frequencies greater 
than 200rad/sec with no more than 2dB of attenuation. 

(b)  Stop band attenuation of greater than -20 dB at warpped d  
frequencies less than 100rad/sec. 

 
Solution:- 
 
The general approach is to first change the requirements to 
those of a High-pass unit bandwidth PROTOTYPE,  design 
such a LPF ,  and then apply a LP to HP Transformation to 
that PROTOTYPE. 
From table (3.2) we see 
 

 

      
   

   
      

     
   

   
 

 

         
 

√    
                          

 
The Backward equation then gives the      for a normalized 
Low pass prototype. 
 
              

 =200/100=2 rad. /sec 
   
The low-pass  filter now has the following specifications 
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*        

   

The Chebyshev filter  of order          can then be easily 
calculated  from  the following equations : 
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 Using the 2dB ripple part of Table 3.4 
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for n=3, and the fact that since n is odd, we have the desired 
Chebyshev unit bandwidth low-pass filter as  
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