Digital Signal Processing (DSP)

Z-Transform

1- Basic Definition of the Z-Transform:

The z-transform of a function X(n) is defined as:

X (z) = E X(N)z ™ "| The power series for the z-transform is called a Laurent series:

Nn=—oo

So we can write that X(z) = Z {x(n)}
There is a close relationship between the z-transform and the Fourier transform of a
discrete-time response h(n), which is defined as

H(e™) = > h(ne ™ z=el" i) g
N=—o0 l

The z-plane is a complex plane with an imaginary and

real axis referring to the complex-valued variable z. f’n

Relz)

“H@) = Y h(z"

N=—o0

2- Region of Convergence:

The ROC for a given x(n) , is defined as the range of z for which the z-transform
converges.

Example- 1: Find z-transform of x(n) = anu(n) for0<a<1?

Solution: The z-transform is given by

0

X(2)= Yaun)z" =Y (azy

n=—w n=0

Which converges to

1 Z

X(Z)zl—az_l T 7_21 for z=x+1iy,lg|= '+ ¥y,
laz | <[lor|z] > |a| iy

x* +y'>at,

Next: Another ROC example | *" +y" =a

z|> a,

]
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Digital Signal Processing (DSP)

Example- 2: Find z-transformof X (N) =-b " u (-n—1)

Solution: The z-transform is given by
-1

X@)=Y XMz =Y -b'7" Or X(@)=-3b"z"

N=-c0

X(z):—ib‘“z“ :-i[ﬂ :1-2[&}

The ROC in this case is the range of values where

X(2)=1-—~ =2 for < | i<
1-b™z z-b /' \;(;
-1 |z <|b|
b z‘ <1lor|z| <|b| k_/.
Example- 3: X(N) = a”u(n) —b" u(-n—1)
Solution: Using the results of Examples 1 and 2, rpline
Z Z
X (z) = —
(2) z—a z—Db

ROC1 |z| > a

ROC2|z| < |b| RoC lal <1zl < Ibl
ROCt = ROC1~ ROC?2 f\
-Common area exist \/a b

forb">a &a=b (ROCrings)
z—plane

and for b <a (no ROC).

i i
The ROC for x(n) is the intersection of the circle Z - be and the circle Z - ae as shown in Figure

3- Z-Transform properties:
® Linearity: if x,(N) <—=X4(2)
and x,(n) <—=>X,(2)
Then for a; & a, constants
a; X1(N) + az Xo(N) <—=> a; X4(z) +az X,(2);
ROC;=ROC,; N ROC,,
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® Uniqueness: if x,(N)<—= X4(2)
and x,(N)<——=> X,(2)
if x1(N) # xo(N) then Xy(z) # X5(2)
® Time Shifting: if x(n) <—= X(2)
Then  x(n-ng) <—=> z7™ X(2);

® Multiplication by an Exponential Sequence:

if x(N) <—=>X(2)
Then a" x(n) <—=>X(z) with z = z/a;
ROC= |a|]. ROCx, so if r. < ROCx <ry
|al. r. < |a] ROCx <|a| ry
|lal. r. < ROC <|a] ry
® Multiplication by ramp:
if x(n) <—=> X(2)
Then nx(n) <—>-z {d X(z) / dz};

ROC: ROCx except for the possible addition or deletion of the origin or infinity.

® Time Reversal:
if X(N) <—=> X(2)
Then x(-n)<==>X(1/2);

ROC: 1/ROCXx

4- Some Common z-Transform Pairs:

Sequence Transform ROC
1. d(n) 1 all z
2. uln) zl(z-1) l2]>1
3. =u(-n-1) zl(z-1) HE
- all z except 0
4.6(n-m) zm if m>0 or aif m<0
5. a" u(n) zl(z-a) 2|~ al
6. —p" u(-n-1) zl(z-b) 2|<[b]
7. [coswgn] uin) (2-[cosmylzM(z*-[2cosmg)z+1) |2]>1

8 [sinwgn] uin)

[sinmglz){(z2-[2cosmylz+1)

l2]>1
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Example- 4: Find z-transform of

x(n) = (n—2)a"? cos[w,(n — 2)] u(n-—2)
Solution

X(z) = 272 [ Z {n cos[w,(n)] u(n)}]|z—s z/a
for |Z| > a

= 72 [—z di 7 {cos[w,(n)] u(n)}] lz—z/a

—_z1] 2 7 {cos[w,(n)] u(n)}] |z—z/a

| dz
_ ' d (-Z% cosw,+2Z—cos w
= -7 1|—-|—==2 2| |z— z/a
dz\  (Z?2-2Zcosw,+1)

i 2
dl (Z/a> CosS w, + 2 (Z/a> — COS W,

_dz <(Z/a>2 ~2 (z/a) cos w, + 1)

ROC=?

H'W;(:n) = (n—2)a" * cos[w,(n — 2)] u(n—1)
H'W"i’:(n) — n a3 COS[wo(n —2.5)] u(n—2)
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5- Poles and Zeros

When H(z) is arational function, i.e., a ration of polynomials in z, then:
= Theroots of the numerator polynomial are referred to as the zeros

of H(z), and
= Theroots of the denominator
polynomial are referred to as the
poles of H(z). iz} ~—= poles
Example- 5: For the response '

1 i l "
R = = il e
(n) ?(3) w(n) 5(2) w(n)

= Can plot poles and zeros on
complex z-plane:

HI: ] fon Ly Ly Zeros '
I = el - 2 -
Z [?(3) u(n) 6(2) u[n]} z

A =

> G)nu[n] -6 (zl)nu[n] 2"

=12 o267

_ 7 B 6 _ 1 - %z"
-3z 1-3z7' (A-352hH0-4zY)

oz — D)

S z-DE-
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am I
ﬁ \ z-plane Kj \ z-plane
J’ 3 d Py y
N e , b ’i 1 Re
= 3 SR

(©)

7(_;)".4,?,_1:,(%)"“[”,_1_(__?: P yT) >

6- The Inverse Z-Transform
« Less formal ways sufficient most of the time
— Inspection Method
— Partial Fraction Expansion
— Power Series Expansion
e Inspection Method
— Make use of known z-transform pairs such as

pad 1 z
auim ey Loty

® |nverse Z-Transform by Partial Fraction Expansion:
» Assume that a given z-transform can be expressed as

» Apply partial fractional expansion

N

ZBZ + 2 - dkz +ZS:<1 ir )

k=1 k=i m=1
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* Firstterm existonly if M >N
— By is obtained by long division
» Second term represents all first order poles
« Third term represents an order s pole
— There will be a similar term for every high-order pole
» Each term can be inverse transformed by inspection

M-N iy N S Cm
X(2)= Y Bz + Y ey
r=0 k

k=Lk=i + m=1 (1— d. Z_l)m
» Coefficients are given as 1
A =Q-dz)X(2),,

B 1 ds" “dwr X (W
S di)sm{dwsm la-dwp x( )]}

Easier to understand with the following examples:

W= d i71

Example- 6: Find the inverse Z-Transform of
Z

X(Z):m forROC:a)|z|>1,b)|Z|<%,c)%<|Z|<1
Solution
X;Z) "3z —14z 1z —1}5’(2 VR
F@)=z —A1/3)+(ZB—1)
A=1limF(Z)(Z ~1/3) >= 3(21_1) - _%
B = lim F(Z)(Z —1)%=ﬁ :%

__ -2 12
(z-1/3) (z-1)’

~2)Z (127

F(2) (z-1/3) (z-1)

S0 X(2)=
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1
a)[{>1 roc b:'lzl“:g ROC
Since the ROC outside the poles Since the ROC inside the poles
The sequence is positive The sequence is negative
x () =-(1/2) (1737 u(n) +(1/2) u(m) x () =(1/2) (1/3)" u(-n-1)—(1/2) u(n-1)

c)% <|g <1 roC is

-1/12Z
(Z-1/3)
122
Z-1
x (@) =—(1/2) (13 un)—(1/2)u(n-1)

— Outside pole, +ve sequence.

— inside pole, -ve sequence

1
—=lg =1
3 H

7-Properties of ROC of the Z-Transform

* ROC is aring or disk centered at the origin.
« Fourier transform converges absolutely if ROC includes the unit circle.
» ROC contains no poles but is bounded by poles.
« If the sequence is finite in length, ROC is the Entire z-plane
except possibly z=0and z = «.
» If the sequence is right-sided, ROC is an outer disk.
« If the sequence is left-sided, ROC is an inner disk.
« If the sequence is double-sided, ROC is a ring.
» ROC is a connected region.

Example- 7: Find the inverse Z-Transform of
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':'_I 1-_2 7'-| :

X(@)=E Ao hef 0 s
(3,1 [l—-]--»-'lj[l--") MEPER
2 2- 2H - 2

IfROC is 2| > 1, then IfROCis%<\z|<],then

n n
x(n)= 25(!1)—9[%] u(n)+8u(n) x(n)= 25(;;-]—9[%] u(n)-8u(-n-1)

IfROC is |7] < %, then

x(n)=28(n)+9(1/2) u(-n—1)-8u(-n-1)

Example- 8: find the inverse Z-Transform of

X(z)= . L . ROC:|z|>%
1-=zt|1-=z7
4 2 L
- Order of numerator is smaller than denominator (in terms of z™)

- No higher order poles

A :(1_%2_1)X(Z){z—1 = [1;Ellljj =-1 and A= [1—52‘1}((2{_; = (1_31[;le =2
T —
X(z)= (1_1121) - (1_§le >3

* ROC extends to infinity, - Indicates right sided sequences

x{n]=2[%] u(n)- [H u(n)

Example- 9: Find the inverse Z-Transforn

.3 ., 1 ., 1 ~
1—52 +§z (1—2219(1—21)
4

N a4V
X(z)— 1+227 +z2 (1+z ) |z|>1
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¢ Long division to obtain B,

2
1. 3 4 )22 42270 41
2z 22 +1 g .
z77°-32+2
5z1-1
X(z)=2 14527 or X(z)=2+ 'i& +1A21
(1—12‘1j(1—z‘1) 1-2z7% F
2
A:(l—izljx(z)( =-9 A =(-27)X(z) =8
2 z=1 z=1
2 A z-plane
9 8
X(z)=2- 1
@) e 4>

¢ ROC extends to infinity, Indicates right-sides sequence e

x(n)=26(n)-9(1/2)" u(n) -8 u(n)

8- Relationships between System Representations:

Froquency response
Hie'=)

17 stabie

let z =ef™

Take inverse
7 transform M

) Teke 7 transform
D:ffemnce nohmelot Y2y X(2)

fake ¥ transform

Write in terms of 2 ¢
then cross-multiply
and take Inverse

Relationships between difference equation, system function, impulse
response, and frequency response for stable causal systems represented
by linear, constant coefficient difference equation.

Example- 10: Using Z-Transform, find the solution (forn > 0) to the following
linear constant coefficient difference equation:
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1

y) =2yt —1) +y(n—2) = (;)n

With initial conditions y(—1) = 4 and y(-2) = 10.

Solution: Taking the Z-transform of both sides gives

3 1
V(D) = SH(D+ 27 YD) +5 (-2 + 27y (D) + 2V (D)} = ——
Z —_——
4

Substituting in the initial conditions and rearranging gives

+1-2z71

v@=[1-2z71 42277 = 2o

4
And dividing by [1-3z-1 +227?]

2 (227 —%Z+%)

1 1
(2-3)(z-3)-D
By partial fraction expansion, we can write

Y(Z) =

5Z VA 5Z
3 n n 3
4 2

Taking the inverse z-transform, the difference equation is
1/1\" /1\" 2
y(n) = [5 ) +G) +§l“<”>

H.W: Try to solve it in time domain and compare the results.

Y(Z) =

(Z+1)
(Z2-27+3)
difference equation realization and the frequency response of the system.

Example- 11: Given that H(Z) = Represents a causal system, find a

Solution: Since the system is causal, first write H(z) in terms of negative power of z

Y(z2) (Z+1) A A

H(Z) = = _
@ X(z) (Z2-2Z+3) 1-2Z-1+372

Now Cross Multiply:
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Y(z2)(1 =227 4+3Z272)=X(2)Z 1+ Z7?)
Taking the inverse transform yields the following difference equation:
yn)—2y(n—-1)+3y(n—-2)=x(n—1) + x(n — 2)

The frequency response can be obtained by letting Z = e/ becomes

H(e) = (Z+1) |z=el® el¥ +1
© )T Zr 27 +3) T e2% — 2¢J9 + 3

e/® = cosw + jsinw

(1+cosw)+jsinw
Cos2w — 2cosw + 3 + j(sin 2w —sin w)

H(e/?) =

H(e?) = [H(e’?)] . [0()

\/(1 + cos w)? + (sin w)?
\/(3 + cos2w — 2 cosw)? + (sin2 w + sin w)?

|H(”)| =

sin w _1 SinZw+2sinw
—— —tan
1+ cosw 3+ cos2w—2cosw

¢(e/®) = tan™?
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DIGITAL FILTER DESIGN

Methods Of System Representation:

1-Difference equation realization:

iéky(n—k):iﬁkx(n_k) General form D.E.
k=0 k=0

2-Transfer function:

H(z)= Y(Z))= %bkz_k

X(z dazt
k

If a,=1 & other ak's;o, then the filter is FIR, otherwise it is IIR.

3-The impulse response:
h(n) = Z ~{ H@)}
Digital Filter Specifications

1-Frequency Response
a-attenuation in pass band and stop band

b-cutoff frequency and roll off frequencies.

2- The magnitude and/or the phase (delay) response are specified for
the design of a digital filter for most applications.

* In some situations, the unit sample response or the step response
may be specified.

* In most practical applications, the problem of interest is the
development of a realizable approximation to a given magnitude
response specification

3- Phase response can be corrected by cascading the filter with an all-

pass section!!!
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For example, the magnitude response \H(ej“’} of a digital lowpass
filter may be given as indicated below

Filter Specification(LPF)
I‘f(éajl K, : passband rtipple (-3db)
K, : stopband mipple

B passband [0,,]
12]
3

transition band [@,,®, ]

Stopbﬂ.ﬂd lm: !HJ

e As aresult, filter specifications are given only for the frequency range 0S o < 1T

To SIMULATE an analog filter, a discrete-time filter H(z) is used in the
analog - to digital — H(z) — digital — to — analog structure shown in Fig. 2.

H(2)
Discrete time filter

| A/D D/A |
(= 17 H(Z) (A me A
1 SAMPLES/SEC SAMPLES/SEC !

Equivalent analog filter

Fig. 2 Simulation of an analog filter

IR FILTER DESIGN:

Several different techniques for designing H(z).
1- Numerical Methods.

2- Biliner Transformation Method .
3- Impulse-Invariant Method.
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1- THE DESIGN BY USING NUMERICAL SOLUTIONS OF
DIFFERNTIAL EQUATIONS:

Simulates a continuous-time linear filter specified by the following

differential equation:
z C ya(t) _ z d dkxa(t)
ko dek ko dtk

This filter has input xa(t) and output ya(t) and can be characterized
by its system function Hy(s) by taking the Laplace transform

d, S
Ha (S) Zk 0%k
YN CiSk

Suppose that we approximate the derlvatlves by backward differences.
The first backward difference V(P[] is defined by

Py = LI 7Y@= 1))

Higher-order backward difference are found by

VO] = VO VED{ym)}

Using the kth-order differences as approximations to the derivatives in
Eq.(4-4) we have

ZC v®[y nT)] = Zd v [x,(nT)]

The above equatlon represents a numerlcal approach for obtaining

y.(nT), the sampled version of y,(t). The Z-transform of the first
and k™-order difference are given below:

Z vOym = Z {2 - v@a -z hy/T

1—z71\"
(VOym)]} = Y(Z)< T )

The Z-transform of both sides
Z 1—z1F% 1 z-1 ¥
[~ Y@ = de —] X@)

k=0

The transfer function is easily seen to be:
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1-—2z1
Y(z) Ziody [—5—1"
X(z) 1-2z1
@y ye,
Comparing with the Equation of H,(s), we see that H(z) can
be obtaind by replacing S by (1 —z~1)/T , thatis
1—2z1 1
S=———, or z-=
T 1—sT
As the frequency response for the analog system is

obtained by letting s = j Q, it is of interest to look at the
image in the z-plane of the | Q axis of the s-plane which is

H(z) =

1 1 oT
1 + o?T?

J

Z = =x+Jjy

= +
1—joT 14 o?T?

Imaginary

v
s-plane

In the above figure, the image of the jQ axis of the s-plane in the z-plane

1
for the mapping Z = 1 Is shown

—sT
It is easy to see that X (the real part of z) and y (the imaginary part of z)
are related by
x:+y?=x
Completing the square in the above equation gives the following
equation:

(x—1/2)*+y* =1/4

Thus, the image in the z-plane of the jQ axis of the S-plane is a circle of
radius 1/2 , as shown in the figure.
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The frequency response of the digital filter is obtained by evaluating
H(z) on the unit circle, z=e/®. The shape of the equivalent
frequency response of the H(z) would not be similar to that of H,(s).
To preserve the shape of the frequency response, we like to have the
transformation from analog filter to digital filter take the jQ axis of
the s-plane into the unit circle in z-plane.

7 s — plane z — plane
//% pl é/ pl
Drn we L

/

Example -1: An analog filter with system function

1
Ha (S) T (s+D(s+2) !

a- Find the H(z) using numerical method
b-Plot the frequency response for f; = 5 bps?
Solution:

1 1

H“(S)=(3+1)(s+2)=sz+33+2

By numerical method

_g1 1
Then H(z) = 2 )
[1—2 ] +3[l—z ]+2

) 1
a- Since, § =

T
TZ
1-2z"147z72-3Tz- 142712
b- f,=5bps, T?> = 0.004

Or H(z) =

TZ
Jo 1 — 2% + e-2® — 3TeJ» + 272

H(e/®) = H(z) -

H(e) = [H(el)] [H(e™)
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H.W.: Suppose we are given the following differential equation:

zc ya(t) zd dkxa(t)
k™ dik _ko k dek

The first forward dlfference AM[x(n)] is defined by

AD [x(n)] = [x(n + 1; x(n)]
and the n™ forward difference is obtained by successive first forward
differences.
(a)- Find the mapping from the s-plane to the z-plane necessary to obtain
the digital transfer function directly from the analog transfer function.
(b)- Using such transformation, find the z-plane image of s = jQ as € goes
from —oo to «© .
Solution:
(a)- The z-transform of the first forward difference is given by

_ xm+1)-xm)] _ ([2X(2)-X(2)]] _ (z-1)
7 [s®lxm)]| = Z {Errie) — (HEBFOR 2D X(2)
The z-transform of the k™" - order forward difference is
_ k
7 [9kl] = (5) x@

Using the k™ - order forward differences as approximations to the derivatives in the
given differential equation, we have

ZC v®[y (nT)] = Zd v [x, (nT)]

The z- transform of both sides

k
-1
W[ (k)
ZCkV Y(Z)—de VO[] X()
The transfer functlon IS ea3|ly seen to be
z—1
H(z) = Y(2) Do di V(k)[ T ]k
7) =
X z—1
@ 5, e v EF
Using Laplace transform on the given differential equation, we can write
Zk 0 dKSk
H
a(s) Z CKSk
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Comparing the above to equations we see that the mapping from the
s-plane to z-plane is

or z=1+sT

(b)- for s =jQ as Q goes from —w to « .
z—-1

§=—, Zz=1+sT andfor s=jQ,weget z=1+jQT
The locus of points in the z-plane as Q varies is shown below
Im
F'y
v
ic
z-plane
» He
1
8
L |
v |l
G

2- IR FILTER DESIGN BY BILINEAR TRANSFORMATION

Design Concept:- Using a first-order differential equation

a;y,(t) +apy,(t) =box(t) i §))
The transfer function Hy(s) can be written as

by
Ha(S) = m (2)

The fundamental theorem of integral calculus allows us to write

t
Yy (1) = jy,',(t) dt + y,(t,) U ¢ )

to
Since EQ.(3) holds for any t with any t, , we lett=nT and t,=(n-1)T
to get

y,(nT) = f(’;T_l)T y () dt + y [ — DT] oo (4)

I
Using the trapezoidal rule jf(I) dx = %(Irli) [ £+ ()
4
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To approximate the integral and by assuming equality, a recursive
relationship for determining y,(nT) can be found from Eq. (4) as follows:

Ya(nT) = yal(n = DT] + (3) Ga(n) + yal(n = DT} ... (5)
From Eq. (2)

a b
y (6) = ——2y,(t) + — x(b) T ()
a; a
Now the differential equation evaluated int=nT:
ao b
y,(nT) = ——y,(nT) + —x(nT) ......... ... ... .. (7)
aq aq
&
y.((n—1T) = ——ya((n 1T) + —x((n T) ...

Substitute (7) & (8) |nto (5) to obtain a dlfference equation for the
equivalent discrete-time system. Then

T a b a
yanl) = (5) - g2 D) + 2 x) —22y.((n - 1)T)

b
+ fx((n — 1)T)} + yq.[(n—1)T]
The previous expression can be expressed in the following form

(1 + Zal )ya(nT) — (1 — ZL) Ya((n—1T)

= ﬁ{x(nT) +x((n—1T)}
1
The z-transform of the previous equation is
( Tay )Y 1-T ) 1yez = Tho (X(2) + 271X (2)}
70 ) Y@~ (=507 Y(@) =5~ (X() + 7X@

Transfer function of the equivalent digital filter is

Thg -1
Y (2) 2a, (1+Z70)
H(2) =S5 or Ho) =77, Ta
Xy M
Tho (142 FoL(1+27h)
H(z) = Ta \ Ta or H(z) = Ta
(1+2a3)—(1—2a2)z‘1 (1-z D)+ 5> A +zD)
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Th,
2(11 bO
H = Thus H =
(2) (1-z1) Ta, us H(z) a 2(1-2z71) ta
(1+z71)  2ay LT(1+2zH " 70

Comparing Hj(s) of Eq. (2) and H(z) it can be seen that H(z) can be
obtained from H,(s) by using the following mapping relation:

2 (1-z71) 1+SZ—T s
_ == - OF Z = —F .eeeeen
-1 sT
T(1+z7%) 1_2_

This is the bilinear transformation. The image of the jQ axis from the s-
plane in the z-plane is shown in the Figure below. The bilinear
transformation given in Eq.(18) has the following properties:

(1)- The entire jQ axis of the s-plane goes into the unit circle of the z-plane.
(2)- The left half side of the s-plane is transformed inside the uint circle of
the z-plane.

// 4T T ST
/// R y A Imaginary

Fd s i
///l//ﬁ// Imaginary
1d

7, s—plane

zZ = sT

Therefore a stable analog filter would be transformed into a stable
digital filter. While the frequency responses of analog filter and
digital filter have the same amplitudes. There is a_nonlinear
relationship between corresponding digital and analog frequencies.
1457

_Jor
13

If s =jQ, then Zz =
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o jo  _jo ®
. 21—_eJjo 2€ Z(ez—e 2) 2j2sin5 2 w
ifz=e“s=— o T _jo/ jo joN T wzzl_tan_zlﬂ'
Tl+e Te_7(67+e—7> T2cosz T 2
2 w -1 QT
a=gtan(y) o w=2tn(3)
&
Y/ A » 00
Q)
Q== *—7_. .. .. —

B Nonlinear mapping introduces a distortion in the frequency
axis called frequency warping seethe following Figure:

The digital frequency will have a critical frequency w. given by
w. = 2tan"1(Q.T/2). The equivalent critical frequency becomes
2
Qceq = Ttan-l(ﬂcT/Z)
WHICH WILL GIVE Q. ONLY IF
(Q,.T/2)is small that tan~1(Q,.T/2) is approximately equal to (Q.T/2)

This warping of the critical frequency will be compensated for in the
design procedure using the bilinear transformation by prewarping.
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* |IR Filter Design Procedure

(] [=] [=] [=]

Q) Q

Given specification in digital domain

Convert it into analog filter specification

Design analog filter (Butterworth, Chebyshov, elliptic):H(s)
Apply bilinear transform to get H(z) out of H(s)

K1

K2 [~

1=z

T 1+z!

H(z)=H(s)

wl @2 T

TABLE 3.2 ‘ANALOGVTO—ANALOG TRANSFORMATION

Prototype response Transformed filter response

Design equations

20 log G (78 20 log TFA(7E2) ]

o

Forward: £}, = 02,0,
Backward: 2, = /0,

Ky
- - Ly
2,
Low-pass G (.5) S =570, Low-pass FI(S)
04 20 los 1ais2yi o4 20 tog Ha (/523 Forward: ) = Q, /1
Ky | !:,l =g Backward: 1 = O, /O
A Ko - I
e h S - 5z
1 g2 £ 82,
Low-pass (7 (.8 S 2,085 Tiphpass A8
o4 20 tog G (/)i o1 20 de Taro sy Forward: {1, = (€2, - 1.)/2
& |- Q= (20 = 000V - 0,0,
Ml £, = (02, - 2,037+ 0,0,
o ih G, Q) i1, £ Backward: 0, = min{[a], |Bl}
_"(7,,,” Bandpass /{5 A = ('—Slf -+ Ill.flu)/{_(ll(flh — 0]
52 , . 2
E D= (07 — Q0 /1051, — 1))
U las reson Forward: {1, = 02, — (1,3/2
A 1) = [0, /007 + 2,003 - €,/
K| Qo = 16,000 + Q]2 + Q,./0,
i ~ e §2

i, 82, $1, 51

Backward: £1, - minflal, |8}
A= LY, - O/ 03+ 00
B = 4,002, — S171- 002 4 2,00,
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e TR ATET TR TR

TABLE 3.1b BUTTEHW.éRTH;:P_Q'*}:P,'Pf‘f'_l.‘s‘!—':‘;;::"f:-SI; AINDARD AND -
CeE TS T P EACTORED FORMS TR T s

T T Standard ‘form.

B;.(S) = @St + B, STT s T 8S T

g S ar T as! as a, o E] . a2 a4 8¢ ‘ n
| ' 1 1 1
1 V2 1 2
1 2 2 1 3
: T 2.613 3.414  2.613 1 4
: 1 3236 ~ 5.236" 5236  3.236 1 2
L 3mel.. 7484 . 9141 7864 384 0 .o
1 44547 7710.103 °  14.606" 14,606 -10.._:g: 3 ;.:26.. L 7
1 5.126° . 13.138° 25.691 . 21.848 1312 12 I,
- . . e - ¥ . .
= o
L sl T
2+ Iy -1 2
Lo GFE s s+ D 3
2 0.765365 + 1)(s? + 1.8aT76s + 13 .. 47,
)52 4 0.6180s + 1Xs + 1.6180s +'1) .~ 5
. s + V25 + 1)(:21 + :-93213: 1 B . g
s 4 X s+ 1:24565 + 1)(s? ~+ 1.80 . 2

(s> + 0.3986s + IHsT:+

A ye? 4 1.66305 + 157+ 1:9622s + 1)

: Bu_.-ittenvbr!:ﬁ‘ filter
ST ;
1 _

P e R +1 B

H (5=

‘Gource: Kuo, Frankiin F. Neowork Analysis and Syn

nesis. Wiey: New York, 1966, p. 372 Reprinied wit'.,
permission. . ..

‘Example (LP Butterworth Filter)

Design and realize a digital low-pass filter using the bilinear

transformation method to satisfy the following characteristics:
(a)Monotonic stopband and passband(Butterworth Filter).
(b) -3.01dB cutoff frequency of 0.5x rad.
(c) Magnitude down at least 15 dB at 0.75 « rad.

Solution:-

The design procedure is that of using the bilinear

transformation on an analog prototype and consists of the
following steps:

Stepl. Prewarp the critical digital frequencies
wl =0.5mTand w2 =0.75m using T=1 sec to get

Q' 2t w1 2t
= —tan—— = 2tan
=T 2

w
=2.00
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075 — 4.8282

Q) = %tan%z = 2tan

Step2. Design an analog low-pass filter with  critical
frequencies Q7 and Q;, that satisfy

2 >20log |H,(jQ1)| = —3.01dB = K,
20log |H,(jQ3)| = —15dB = K,

A Butterwirth filter_ is used to satisfy the monotonic
property and has an order n and critical frequency Q,
Determined by the following equations :

_ [logqo[(107%1/10 — 1) /(1072/10 — 1)]
- 2log10(Q41/Q)

0, = 0,/(10-4/10 — 1)

We get
loglo[(103.01/10 _ 1)/(1015/10 _ 1)]

210910 (1-5782)

n= =1,9412 =2

Q. = 2/(10301/10 _ 1)"* — 5
Therefore the required prewarped analog filter using the
Butterworth Table 3.1 and low-pass to low pass
transformation from table 3.2 is

1 1
H S)= =
() sPHV2s+ 1l (s/2)2+V2(s/2) +1
4
s2 + 225+ 4

Step3. Applying the bilinear transformation method(T=1) to
satisfy the given digital requirements:

H(Z) = Ha(s)l 2(1-z"1)
so|—=—=_2

(1+z~1)
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H(z) = 2(1—z1) : 2(1—2z1)
[—(1+Z_1)] + 22 ArzD +4
H(z) = 142z 14272

3.41+ 0.586z72

This digital filter can be realized by specification of a
difference equation obtained from the transfer function
H(z) given by

Y(z) 1+2z7'+z7
X(z) 3.41+0.586z2
Cross multiplying gives:

H(z) =

Y(2)[3.41+ 0.586z7%] = X(2)[1 + 2z + z7%]
And taking the inverse Z-transform we find
[3.41y(n) + 0.586y(n — 2)] = [x(n) + 2x(n — 1) + x(n — 2)]
By rearranging and scaling. y(n) can be realized by the
following difference equation:

yn) =0.293[x(n) +2x(n—1)+x(n—2)] - 0.172y(n — 2)

x(n) ;m
N

-0.172 »®7
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Example (BP Butterworth Filter)

Design a digital band-pass filter representing an analog one with
the following specifications:
(a) Stop band attenuation of at least 20dB at warpped
frequencies of 20Hz and 45kHz.
(b) -3 dB lower and upper cutoff bilinear warpped
frequencies of 50Hz and 20kHz.
(c) a monotonic frequencies.

Solution:-
The desired frequency response is shown on the right

(dB) 4 20 log ! 77¢;52))

Figure 3.8

Typical bandpass requirements.
From table (3.2) we see
rad
QO =2m(20) = 125.66 —
sec
rad
Q; =2n(50) = 314.159 —
sec

rad
Q, =2m(20000) = 125663 —
sec

rad
Q, = 2m(45000) = 282743 —
sec

kl = —3dB kz == —ZOdB,
The Backward equation then gives the , for a normalized
Low pass prototype.
Q, = min[(|4]), (|B]) ]

From table (3.2) USING ( Q4, Q,, Q;and Q, )we see

66



Digital Signal Processing (DSP)

Ao C0fr 0y g (05 0 0))
[ Q1( Q- Qi [ Q20 Qu— Qi
A=2.5053, B=2.2545
The most critical value ., is the minimum of the two, that
is, Q, =min[(|A]),(|B|) ]=2.2545

The low-pass Butterworth filter of order n can then be
easily calculated from _the following equations :

. [loglo[(IO"‘l/lO —1)/(107%2/10 — 1)]
- 2log10(1/9;)

We get

n = (1092107710 — 1)/(A0%0 — D] _ ) g5

2log1o (T154-5)

from the Butterworth Table 3.1b and n=3 we have the low-
pass prototype as

1
T s34+2s2+2s+1

HLP

The required analog-to-analog transformation (table 3.2) is
determined from Q;and Q, as

_ s2+3.95x 107
~ 5(1.25 x 10%)

(SZ+ 'Q'u'Ql)
°7 L( Qu— Q)

Hgp(s) then is finlly seen to be

Hgp(s) 1

" [s2 + 3.95 x 107]3 +2[32+3.95x 1077
s(1.25 x 105) s(1.25 x 105)

s2+3.95 x 1071

sazsx105 | t1

+2|

Hgp(s)
° 1.9 x 101553

T S6+2.5%x 10555 +3.15 x 10205 + 1.99 x 107553 + 1.25 x 102852 + 3.9 x 10205 + 6. 15 x 1022
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Applying the bilinear transformation method(T=1) to satisfy
the given digital requirements:

H(z) = Hgp(s)| _lza-zYH
(1+z~1)
1.9x 101 21—z Yy
W) - ' (1+z7 1
2(1-z7Y Jza-z1 za-z1y [za-z1y
lm +2.5x10|(1+z_1) +3.15x 10 (1+Z_1) +1.99x 10 |(1+Z_1)
+1.25X1013|[2(1;Z_1)]I -%—3.9X1020|[2(:l-;z_l)]l+6.15><10zz
l(1+z 1) | l(1+z71) |

Example (HP Butterworth Filter)

Design a digital filter representing an analog one with the
following specifications:
(a) Pass all signals of bilinear warpped frequencies greater
than 200rad/sec with no more than 2dB of attenuation.
(b) Stop band attenuation of greater than -20 dB at warpped d
frequencies less than 100rad/sec.
(c) a maximally flat IIR response.

Solution:-
The desired frequency response is shown on the right

-

0420 log 1H(j0)! Forward: (}; = (,/Q,

K === Backward: O, = Q,/Q’
l r

1 Q 2,0,
Low-pass G(S) S=Q,/S High-pass H(S)

s b oo

CMne Ioriont JO

From table (3.2) we see

rad rad
Q, =200—, Q, =100——
sec sec

kl - —ZdB kz - —ZOdB,
The Backward equation then gives the Q, for a normalized
Low pass prototype.

Q,= 0,/0.=200/100=2
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The low-pass Butterworth filter now has the following
specifications
'Ql = 1 ) k1 == _ZdB
‘QZ = 'Qr = 2 ) kz == _ZOdB

The order of the filter is determined as follows

B [loglo[(IO"‘l/lO —1)/(107%2/10 — 1)]
" 2log10(Q1/Q3)

We get
4/10 _ 20/10 __ 1
2logq, (7)
04
Q. = = =1.069

from the Butterworth Table 3.1b and n=4 we have the

NORMALIZED low-pass filter as
1

* 7 (s240.765s+1) (s> +1.85s + 1)

The low-pass filter prototype

Hip(s) = H4(S)]S_,[Qi]

Hp(s)

1
S 2 S S 2 S
(T069)* +9-765(10g9) + 1) ((1069)* + 1-85(;959) + 1)
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To get desired HPF apply LP TO HP( analog-to-analog
transformation (table 3.2))

Hgp(s) = Hpp (S)]s_,[ﬁ]=200/s

Hyp(s) then is finlly seen to be

1

Hgp(s) =
T (A 10765387 +1) (AT 4 1.85287) + 1)

Applying the bilinear transformation method(T=1) to satisfy
the given digital requirements:

H(z) = Hgp(s)|

Jza=zH
(1+z71)
H(z)
_ 1
<(—2(1121) )2 +0.765(— =137 (112_1) ) + 1> ((—2(1lf 1_1) )? + 1-85(—2(11f 2_1) ) + 1)
[ (1+2z71 1+z1 1+z1 [ (1+z71 ]
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Example ( Chebyshev LPF)
Design a Chebyshev LPF representing an analog one with the
following specifications:
(a) Acceptable pass-band ripples of 2dB.
(b) Cut off frequency of 40 rad/sec.
(c) Stop band attenuation of 20 dB or more at 52 rad/sec.
Solution:-
The desired frequency response is shown on the right

Kl =
1+2

K2

The general approach is to first change the requirements to
those of a low-pass unit bandwidth PROTOTYPE, design
such a LPF , and then apply a LP to LP Transformation to
that PROTOTYPE.

From table (3.2) we see

rad rad
Q,=52—— Q. =40——
sec sec
k 201 ! 2dB k 20dB
= (] = — = — ,
1 g 1rez 2

TABLE 3.2 ANALOG-TO-ANALOG TRANSFORMATION

Prototype response Transformed filter response Design equations
01{_520 log 1G ()1 gl 20 lae LH(j2)] Forward: Q) = (,Q),

i, l _\l\ K F\\ Backward: (), = Q./Q,
Z &-..A.\;.w;, Q A‘ [ .,_S_,_ 9}

18, i TR,
u r
Low-pass G (S) S8/, Low-pass/(S)
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The Backward equation then gives the Q, for a normalized
Low pass prototype.

Q.= Q,/Q.=52/40=1.3 rad. /sec

The low-pass filter now has the following specifications

Q=1 , k, = 20lo = —-2dB
1 1 =
1
0,= Q.=13, k,=20log (Z) = —20dB

The low-pass Chebyshev filter of order n  can then be
easily calculated from the following equations :

logo|(g+Vg?-1)| A2-1 1

n= where g = |— ’A:—IH(jQI

log10<ﬂr+ /Qr2+1>

1
k, =20lo = —2dB, €?=0.58489
! g V1 +€2
1
k, = 20log <Z> = —20dB, A=10
Az -1
g = EZ = 13

g2 (5+ /71

n= =

logqo (Qr + /QTZ + 1>

72
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Using the 2dB ripple part of Table 3.4

by
k, —lfor n even
H,(s) = m ) k, = (1 +€2)2
b, for n odd

V,(s)= s"+b,_ys" 1+ -+ bys'+ b,
for n=5, and the fact that since n is odd, we have the desired
Chebyshev unit bandwidth low-pass filter as

by
s5 + bys* + b3s3+b,s2+b,s1 + b,

Hs(s) =

HLP (S)= H5 (S)Js—>s/4-0
by

~ (5/40)5 + b, (s/40)* + bs(s/40)3+b,(s/40)%+b,(s/40)L + b,

H;p(z)= Hyy(s) 1-
LP ) lp JS_’2(1—+§)

(H.W)
Design a digital filter having a 1-dB cut off frequency at 75 Hz
and greater than 20-dB attenuation for > 50 Hz . Find H(z) that
will satisfy the above prewarpped specifications for :

(a) Butterworth .

(b)Chebyshev approximations.
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3.1IR Filter Design by Impulse Invariant Method

Inv.Laplace t-nT Z-Transform
H(s) ——— h(t) <= h(n) ——— H(2)

Example

Find the H(z) corresponding to the impulse invariant design a
sample rate of 1/T samples/sec. for an analog filter Ha(s)
specified as follows:

H,(s) = 5+ a)

Solution:
The analog system's impulse invariant response is obtained
by taking the inverse Laplace transform of Hg(s) to give hy(t)
as

h,(t) = Ae *u(t)

The corresponding h(n) is then given by
h(n) = Ae™*Tu(nT) = A(e *")"u(n)

And therefore the discrete-time filter has the following Z-
transform

Az

H(z) = Z[h(n)] = Z[A(e"*")"u(n)] = prp—

- Ere R S
=S N o T e S
SAahole L e THREE) = i
/v mZ Y . - S i T T T T i
ST ‘
M 3 . T
GY‘CL&/ N :—élsg_ . vﬂirri o T T T T b N; - - .f"
P - Q@L—{( ”’Cil_;;

e s P Fha | Sepasna PPN

Y VY S 7 < ip_.‘ ¥R Ve
fAre che Oy Sy, T RO S
B o7 T Sohase == ! e
P SR ) 5 = bl ie e . ‘ : ‘
o //W,DJ’L«R, Dy G Jagjpl,."_c_ e L W B U R | V .
e 3= . e,
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FIR Filter Design

In the previous sections, digital filters were designed to give
a desired frequency response magnitude without regard to
the phase response. In many cases a linear phase
characteristic is required throughout the pass-band of the
filter to preserve the shape of a given signal within the pass-
band.

Assume a filter with frequency response

H(ejw) = |H(e]w) | ej‘P(ejw)

p(e") = aw — liner phase (—a)

Why linear phase filter ?

The linear phase filter did not alter the shape of
original signal, simply translated it by an amount «

If the phase response had not been liner , the output
signal would have been a distorted version .

In Fig.4.11 the responses of two different filters to the
same input( a sum of two sinusoidal signals) is
presented. The filters have the same magnitude
frequency response but differ in their phases as one
has linear and the other a quadratic phase. For the
filter with liner phase, the sinusoidal components

76



Digital Signal Processing (DSP)

each go through a steady state phase change, but in
such a way that the output signal is just a delayed
version of the input while the quadratic phase filter
causes phase shifts in the two sinusoidal signals
resulting in an output that is a distorted version of
the input signal.

It can be shown that a casual IIR filter cannot
produce a linear phase characteristic and that only
special forms of casual FIR filters can give linear
phase. This result is clarified in the following
theorem.

Theorem : If h(n) represents the impulse response of
a discrete-time system, a necessary and sufficient
condition for linear phase is that h(n) have finite
duration N, and that it by symmetric about its
midpoint.
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THE DESIGN Concept:-

For a casual FIR filter whose impulse response
begins at zero ends at (N-1) , h(n) must satisfy the
following:

h(0)=h(N-1) &
h(n)=h(N-1-n) ...... for n=0,1,2,...... ,N-1

for this condition the general shapes of h(n) that give liner phase.

H(e") = 2 h(n) e "

H(e") = Z h(n) eJwn

0
for N an even number. The summation can be broken into
two parts as follows:

(N/2)-1
H(e™) = 2 h(n) e + z h(n) e/

n=N/2

Letting m=N-1-n ( n=N-1-m) in the second sum gives

2 h(n) e/wn = 2 h(N —1—m) e wW-1-m

n=N/2 N_
m—2 1

But h(N-1-m)= h(m), and the summation can be
reversed to give

&y-1 &y-1

HE™)= > h(m) e+ > h(m) em®-1-m
n=0 m=0
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Combining yields

&1 -1

H(e™)= ) h(n) e+ > h(n) ew-i-n
n=0 n=0

@1 . .
[e—]wn + e—]w(N—l—n)]

H(e) = Z 2h(n) >
n=0

-1

[e—jw(n—%) n e—iw(n—#)]
H(e/") = e w(N-1)/2) Z 2h(n)
n=0

2

By factoring we are able to separate H(e*) into two part
as follows:

&-1

H(eV) = e TW(N-1)/2) Z 2h(n) cos{win— (N —1)/2]}....N even

n=0

Linear phase Magnitude

, N-1
") =—-w (—2 ) - N even

There for, if the sum remains positive, He*) has a
linear phase with slope —(**) , for N an odd number
a similar derivation leads to

(N-3)72
H(e/") = e WW-1/2) {h (?) + Z 2h(n) cos{w[n— (N —1)/2]} }
n=0
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DESIGN of FIR filters using windows:

The easiest way to obtain an FIR filter is to simply truncate
the impulse response of an IIR filter . If hy(n) represents the
impulse response of a desired IIR filter, then an FIR filter with
impulse response h(n) can be obtained as follows:

h(n) = {hd (n) N1<n<N2
0, Otherwise

In general, h(n) can be thought of as being formed by the
product of h,;(n) and a"” Window function” w(n) , as
follows:

h(n) = hys(n) wn)

The frequency response of the resulting filter is the
convolution of

H(e")= H,(e")*W(e")

For example, if H;(e™) represents an ideal low-pass
filter with cutoff frequency w, andw(m) is a
rectangular window positional about the origin, the
H(e’*) is shown blow

JHgter) (el J e

I | H Iljm‘—h—
Tw 71 -y g T W

e A an -
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DESIGN PROCEDURE:-

An ideal low-pass filter with linear phase of slope

-a and cutoff w, can be characterized in the
frequency domain by

) ejwx W <w
Hq(e'®) :{ ] ¢
0, lw,| < || <7

Taking the inverse Fourier transform

sinfw.(n—«)]

hqg(m) = T —a)

A casual FIR filter with impulse response h(n) can be
obtained by multiplying hy(®) by a window
beginning at the origin and ending at N-1 as follows:

sinfw.(n—x)]
mTn—a)

h(n) =

w(n)

For h(n) to be a linear phase filter, & must be
selected so that the resulting h(n) is symmetric .

As Sl o symmetric about n=a and the
n(n—a)

window symmetric about n=(N-1)/2 , a linear phase
filter results if the product is symmetric . This
requires that

a=(N—-1)/2

82



Digital Signal Processing (DSP)

Some of the most commonly used windows are the
rectangular, Bartlett, Hanning, Hamming, Blackman, and
Kaiser windows. These are defined mathematically as
follows:

1 0<n<N-1
Rectangular: = = It =
g Wr (1) { 0 elsewhere
2n
Bartlett: wg(n) =<2-2n _ B
N—1’ (N 1)/ZSnS(N 1)
0 elsewhere
{l—cos %]}
Hanning : Whan M) =% 0<n<N-1
0 elsewhere
Hamming:
_ 0.54—0.46cos[2L" 0<n<N-1
WHam(n) - N-1
0 elsewhere
Blackman:
2nn 4mtn
wg () = {0.42 —0.5cos [E] + 0.08cos [E] 0<n<N-1
0 elsewhere

0<n<N-1

Kaiser: wg(n) =

2
0 elsewhere

Where I, (x) is the modified zero order Bessel function of the first kind given by

2
I,(x) = f exp(x cos ) df/(2m)
0

Plots of the windows and their Fourier transform magnitudes (in decibels) are
shown in Fig 4.14 for N=51.
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Design table for FIR low-pass filter design
Window type Transition width Minimum stop- | K
band attenuation
Rectangular 4m/N -21dB 2
Bartlett 8m/N -25dB 4
Hanning 8m/N -44dB 4
Hamming 8m/N -53dB 4
Blackman 12m/N -74dB 6
Kaiser Variable

This table although a crude approximation may be used to design a FIR LPF
from (ky, ko, wy,w; ) , the following example describe this technique :

Example :- Design a low-pass digital filter to be used in an { A/D- H(z)- D/A}
structure that will have a -3dB cutoff of 30w rad./sec and an attenuation of 50dB
at 45m rad./sec. The filter is required to have linear phase and the system will
use a sampling rate of 100 samples/sec.

Solution:-
The digital specifications obtained are as follows:

w; =0, T=30r(0.01) =0.3rad, k, =-3dB
w; =0, T=45mw(0.01) = 0.45 Tt rad, k, = —50dB

Step 1- To obtain a stop-band attenuation of — 50dB or more,( from the above
table ) a Hamming, Blackman, or Kaiser window could be used. The Hamming
window is chosen (k=4)

Step 2- The approximate number of points needed to satisfy the transition
band requirement can be found for

N>k X2n(w; —wq) =k x2m(0.45m —0.30m) = 53.3
To obtain an integer delay the next odd number (N=55) is selected.

Step 3- select the liner phase of slope « and cutoff
w,=w;=0.3 rad

N-1
Thus giving a trial impulse response for a window as

_ sinfw (n—x)]
h(n) = nn—a)
For Hamming window wn) = wyam = 0.54—0.46cos[Z2|0 <n<N—1

w((n)

sin [wc(n - %)]

(1)

h(n) =

2mn
{0.54 — 0.46cos [m]}

2nn
54

sin[0.3n(n — 27)]

h(n) = n(n—27)

{0.54—0.46cos[ } 0<n<54
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Example ( Chebyshev HPF)
Design a Chebyshev_digital filter representing an analog one
with the following specifications:
(a) Pass all signals of bilinear warpped frequencies greater
than 200rad/sec with no more than 2dB of attenuation.
(b) Stop band attenuation of greater than -20 dB at warpped d
frequencies less than 100rad/sec.

Solution:-

The general approach is to first change the requirements to
those of a High-pass unit bandwidth PROTOTYPE, design
such a LPF , and then apply a LP to HP Transformation to
that PROTOTYPE.

From table (3.2) we see

£ ey

0 20 log 1H ()l Forward: () = (1,/Q,
Ky f==-z Backward: (), = Q./Q)
Kyl ]' ‘
1o Q' Q, *
Low-pass G(5) $=Q,/5 High-pass H(S) é
5 . ;’5
M dne L0 s : =
rad rad
0, =200—, Q. =100——
sec sec
1
k, = 20log = —2dB k, = —20dB,

V1 €2

The Backward equation then gives the Q, for a normalized
Low pass prototype.

Q.= Q,/9,=200/100=2 rad. /sec

The low-pass filter now has the following specifications

Q=1 , k; = 20lo = —2dB
1 1 g 1rez
1
Q= Q.=2 , k, = 20log (Z) = —-20dB

The Chebyshev filter of order n  can then be easily
calculated from _the following eqguations :
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log1o[(9+\/g2 1)] a2-1 , 1

1 ( 2 >Whereg: &4 = Thga
0g10| O+ Q" +1

k, = 20log =—-2dB, €?=0.58489

1
V1 +€2

1
k, = 20log (Z) — _20dB, A=10

Az -1
EZ

g = =13

[ ]
_ | tog10 [(g +9% - 1)] _
logqp <Qr + /Qrz + 1>

Using the 2dB ripple part of Table 3.4

132 —
logqo (2 ++22 + 1)

=2.47=3

by
n for n even
n
b, for n odd

V,(s)= s"+b,_ys"1+--+bs'+ b,
for n=3, and the fact that since n is odd, we have the desired
Chebyshev unit bandwidth low-pass filter as

)

H =
3(5) s3 + b,s?2 + bys + b,

Hyp(s)= H3(8)]s- o,/s= H3(5)|s-200/s
Hyp(z)= HHp(S)JH

1-z
20+7
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