<u>Lecture 1+2+3 - Enteric gram-</u> <u>negetive rods (*enterobacteriaceae*)</u> <u>Enteric bacteria or coliform</u>

✤ General Characteristics:

- A large heterogeneous group of G-ve rods (non-spore forming), natural habitat is the G.I.T. of humans and animals, motile with peritrichous flagella or non-motile, aerobes and facultative anaerobes, ferment not oxidize carbohydrate, catalase +ve, oxidase-ve.
- It most common cultured in laboratory, includes more than 25genera & 110 spp., only 20-25 spp. are clinically significant. **the most common are :**
- 1) Escherichia coli (part of intestinal normal flora) cause disease incidentally.
- 2) Klebsiella-Enterobacter-Serratia group.
- 3) Proteus-Morganella-Providencia group.
- **4) Citrobacter** (2,3,4,are as intestinal normal flora and incidentally cause disease but less than E.coli).
- 5) Shigella
- 6) Salmonella (Both Shigella & Salmonella are regularly pathogenic for humans)
- 7) Other Enterobac.:Yersinia, Edwardsiella, Ewingella, Hafnia, Cedecea, Kluyvera
- Enteric bacteria produce a variety of toxins and other virulence factors and enzymes, include:
- 1) <u>LPS (endotoxin)</u> have pathophysiological effects: fever, leukopenia, hypotension, hypoglycemia, activation the complement cascade, and disseminated intravascular coagulation (DIC).
- 2) Most of G-ve rods produce <u>exotoxins such as</u> <u>enterotoxins</u> and these toxins, has 2 types:
- A. heat-labile exotoxin (LT Exotoxin): under genetic control transmissible plasmid .

LT exo. Contains 2 subunits (A&B): subunit B binds toGmI ganglioside at the brush border of epithelial cells of the small intestine and facilitates the entry of subunit A, which activates adenylyl cyclase \rightarrow increase the concentration of cAMP and \rightarrow hypersecration of sodium and lead to the diarrhea.

- B. **Heat-stable enterotoxin (ST Enterotoxin):** activates guanylyl cyclase in enteric epithelial cells and stimulate fluid secretion and lead to the diarrhea.
- 3) <u>R-factor (R plasmid) & colonization or adherence</u> <u>factors.</u>
- 4) <u>Bactriocins (Colicins):</u> Virus-like bactericidal substances are produced by certain strains of bacteria against other strains of the same or closely related spp.; their production

is controlled by plasmid . It can be used for typing of bacteria because bacteriocin-producing strains are resistant to their own bacteriocin .

* <u>Antigenic structure</u>

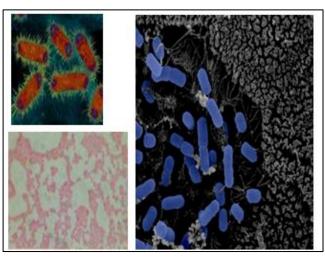
1) antigen (Somatic Ag):

- Side chain of the cell wall LPS, consist of polysacchride heat-stable.
- Eneric bac. are classified by more than 150 O– Ags. Antibodies to these Ags. are IgM.
- 2) K-Ag. (Capsular Ag): external to O-Ags. on some bacteria, heat-labile polysacchride or proteins, more than 100 K-Ags. Associated with virulence, *Salmonella typhi* → capsular Ag.(Vi Ag.).
- H- Ag. (Flagellar Ag): a protein heat-labile or alcohols, more than 50 H – Ags., Abs. to H-Ags. are IgG.

Diseases caused by enteric bacteria:

Generally as normal flora in intestine or upper R.T.,pathogenic only when they reach tissues (U.T.,biliary T., other abdominal sites,lungs,bone, meninges,prostatic G.) ,and may cause bacteremia. Either hospital- or community- acquired infection

1) Escherichia coli


General Characteristics:

- Lactose fermented (pink colonies→ MacConkey's agar), green metallic sheen colonies on EMB agar.
- Fermentative for mannitol & glucose with gas production.
- Hemolysis on blood agar, only when isolated from urine (UTIs)

Pathogenesis:

Depends on the site of infection, cannot differentiated by symptoms from other bacteria.

-The main infections are:

1) UTIs (urinary tract infections):

- *E.coli* is the most common of UTIs.(90% in young women). The symptoms includes: urinary frequency, dysuria, hematuria, pyuria, & flank pain with upper UTIs.
- UTIs can result in bacteremia with clinical sings of sepsis.
- **Nephropathogenic** *E.coli* (have specific O-Ags types & produce hemolysin).
- Pyelonephritis (have a specific types of pilus, P pilus).

2) Diarrheal disease:

Classified according to their virulence factors to :

- A. EPEC (Enteropathogenic E.coli): diarrhea in infants & outbreaks diarrhea in nurseries in developing countries. <u>Virulence factors</u>: chromosomally mediated factors cause tight adherence of EPEC to the mucosal cells of the small intestine, entry to these cells →watery diarrhea (self-limited or chronic), can treated by antibiotics. EPEC have specific serotypes of O&H Ags.
- B. ETEC (Enterotoxigenic E.coli): traveler`s diarrhea & infants diarrhea in developing countries. <u>Virulence factors</u>: colonization factors adherence it to epithelial cells of small intestine, some strains produce LT exotoxin others ST enterotoxin & some produce both of them.
- C. STEC (Shiga toxin producing *E.coli*) or EHEC (Enterohemorrhagic *E.coli*): has been associated with-
 - 1. hemorrhagic colitis (a severe form of diarrhea)
 - 2. hemolytic uremic syndrome (a disease resulting in acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia)
 - (*E.coli* O157:H7 strain).There are at least 2 antigenic forms of the shiga-like toxin (shiga-like toxin -1 & -2).

D. EIEC (Enteroinvasive *E.coli*):

diarrhea in children in developing countries & traveler`s to these countries (invading intestinal mucosal cells).

E. EAEC (Enteroaggregative *E.coli*):

acute & chronic diarrhea in developing countries & as a food – borne illness in industrialized countries .Suggested that it adheres to the intestinal mucosa & elaborates enterotoxin & cytotoxin \rightarrow mucosal damage \rightarrow secretion mucous & secretory diarrhea.

3) <u>Sepsis:</u>

When host defenses are inadequate, *E. coli* may reach the bloodstream & cause sepsis in newborns & as a secondary to UTI in adults.

 <u>Meningitis</u>: *E.coli* & group B streptococci are the leading causes of meningitis in infant (neonatal meningitis).75% of *E.coli* from meningitis cases have K1 Ag.

***NOTE:** the presence of *E.coli* in the water (colony count above 4/dLin drinking water) unacceptable feacal contamination, killed by chlorination of water.

2- Klebsiella-Enterobacter-Serratia Group

General Characteristics:

<u>*K*</u>: lactose Fermentaion rapidly, viscous (mucoid) colonies because it have a large capsule, non-motile. <u>*E*</u>.: lactose F. rapidly, raised colonies (small capsule), motile <u>*S*</u>.: lactose F. slowly, may be pigmented colonies ,motile.

Pathogenesis:

K. pneumoniae: in 5% of normal persons (in R. T. & feces). It cause 1% of bacterial pneumonia (extensive hemorrhagic necrotizing consolidation of the lung), occasionally cause UTI & bacteremia with focal lesions in debilitated patients .

<u>*K. pneumoniae* subsp. *Ozaenae*</u>: hospital-acquired infection (upper R.T.) ,isolated from the nasal mucosa, a fetid, progressive atrophy of mucous membrans.

<u>*K. pneumoniae* subsp. *rhinoscleroderma*</u>: cause rhinoscleroma (destructive granulomatous disease of the nose & pharynx).

<u>K. granulomatis</u> (formerly *Calymmatobacterium* granulomatis) causes genital ulcerative disease. <u>E. aerogenes</u>: free-living in GIT, opportunistic cause UTIs & sepsis.

<u>S. marcescens</u>: a common opportunistic pathogen in hospitalized patients, cause pneumonia, bacteremia & endocarditis .Can be treated by 3ed–generation of cephalosporins .

3- Proteus-Morganella-Providencia Group

General characteristics:

- **Proteus**: non-lactose F.,very active motile (peritrichous flagella)→swarming on blood agar ,urease +, susceptible to antimicrobial drugs (penicillins).
- Morganella: non-lactose F., motile, urease + .
- Providencia: lactose F. slowly or not, urease .

Pathogenesis:

Proteus: UTIs, bacteremia, pneumonia & focal lesions in debilitated patients .

- **P. mirabilis**: UTIs & other infections .
- > **P.vulgaris**: nosocomial infection .
- The rapid motility of **Proteus** help to it invasion of the U.T., & production of urease resulting rapid hydrolysis of urea with liberation of ammonia (urine become alkaline)& promoting stone formation.
- Diagnosis by Weil-Felix test .
 Morganella morganii: nosocomial pathogen .
 Providencia (P. rettgeri ,P. alcalifaciens ,P.stuartii): normal intestinal flora ,all cause UTIs & other infections , resistant to antimicrobial therapy .

Unit 2: Bacteriology

4- Citrobacter:

Lactose F. very slowly or not, motile, cause UTIs.

✤ <u>Diagnostic test for Enteric bacteria</u>

- Specimens: urine, blood, pus, C.S.F., sputum, others.
- Culture: on both blood agar & differential media.
- Serological tests: agglutination with specific antisera .
- Variation in bacterial susceptibility is great, so antibiotic sensitivity are essential .No single drug is available .
- Sulfonamides, ampicillin, cephalosporins, fluoroquinolons & aminoglycosides .

Prevention & control

Depends on hand washing , rigorous asepsis , sterilization of equipments , disinfections , strict precautions in I.V. therapy & keeping U.T. catheters sterile .

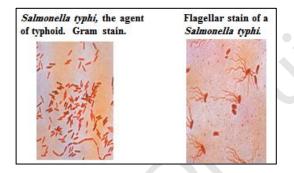
Prophylaxis: using ciprofluxacin or trimethprimsulfamethaxzole.

Prevention of traveler's diarrhea, daily ingestion of bismuth subsalicylate suspension .

EPEC serotypes controlled by orally vaccines (a virulent mutant strain) or injection of killed bacterial suspension

Salmonella-Arizona group

Pathogenic by the oral route, transmitted from animals & animals products to humans & cause enteritis (enterocolitis), systemic infection & enteric fever.


Morphology:

- Vary in length, motile with peritrichous flagellae. They survive freezing in water for long periods & resistant to certain chemicals (brilliant green, Na-tetrathionate & Na-deoxycholate) that inhibit other enteric bacteria, so such compounds useful for isolation salmonellae from feces.
- Aerobic or facultative anaerobic, grow in pH (6-8) & 15-41 C° → produce large, smooth & circular colonies (2-3 mm in diameter).
- On MacConkey's & deoxycholate-citrate agars → Pale colonies (non-lactose fermented). Ferment glucose, mannitol, mannose (with acid & with or without gas); produce H₂S (Black precipitate on TSI agar).

Antigenic Structure

- 1) H (flagellar) Ag: heat-labile protein & highly antigenic.
- 2) **O** (somatic) Ag: heat-stable polysaccharide (integral part of LPS).
- 3) Vi (capsular or surface) Ag: heat-labile, related to virulence

Variation may occurs by lose H Ag (become non-motile), lose of O Ag (change from smooth to rough colony form) & lose of Vi Ag partially or completely.

Classification

• 4 serotypes(group1)causes enteric fever (primarily infective for humans):

Salmonella Paratyphi A(serogroup A) S. Paratyphi B (serogroup B)

- **5. Paratyphi B** (serogroup B)
- S. Typhi and S. Enteritidis (serogroup D)
- *S.* Choleraesuis (serogroup C₁)
- Currently, the genus *Salmonella* is devided into 2 species: **1.** *S.entterica* (5 subsp.):
 - 1.= = subsp.*enterica* (subsp.I)
 - 2.= = subsp.*salamae* (subsp.II)
 - 3.= = subsp.*arizonae* (subsp.IIIa),and subsp.*diarizonae* (subsp.IIIb)
 - 4.= = subsp.*houtenae* (subsp.IV)
 - 5 = = subsp.*indica* (subsp.VI)

<u>2. S.bongori (subsp.V)</u>

Most human illness is caused by subsp.I strains, rarely by IIIa, IIIb, & others, which found in cold-blooded animals.

Pathogenesis & Clinical Findings

- The majorities of salmonellae are pathogenic in animals (poultry, pigs, rodents, cattle & others)- → the reservoir for human infection. The bacteria enter via the oral route by contaminated food or drink → produce 3 main types of diseases (enteric or typhoid fever, bacteremia or septicemia or systemic infection & enteritis or enterocolitis).
- In typhoid fever: ingested *S.Typhi* reach the small intestine →----- enter the lymphatics & bloodstream, the blood carries them to many organs including the intestine →----- bacteria multiply in intestinal lymphoid tissue & excreted in stools. The lesions are hyperplasia & necrosis of lymphoid tissues (e.g., Peyer's patches), hepatitis, focal necrosis of liver & inflammation of the gall bladder, periosteum, lungs & other organs.

Unit 2: Bacteriology

	Enteric or Typhoid fever	Bacteremia or Septicemia	Enterocolitis
Incubation Period	7-20 days	Variable	8-48 hours
Onset	Insidious	Abrupt	Abrupt
Fever	Gradual then high plateau with typhoidal state	Rapid rise then spiking (septic) temperature	Usually low
Duration of disease	Several weeks	Variable	2-5 days
Blood culture	+ve in 1-2 weeks of disease	+ve during high fever	-ve
Stool culture	+ve in 2 nd week on -ve in earlier	Infrequently +ve	+ve soon after inset & after clinical recovery
Symptoms& clinical findings	Fever,headache,ma laise, constipation, bardycardia,myalgi a,spleen & liver enlarged, intestinal hemorrhage & Perforation→ bloody diarrhea (mortality rate 10- 15%)	Following oral infection early invasion of the blood- stream, with focal lesions in lungs, bones, meni nges, etc. without gastrointestinal symptoms	The most common of salmonellae infections. After ingestion (8-48hr) there is nausea, headache,vomiting & profuse diarrhea, inflammation lesions in small & large intestine (bacteremia 2- 4%)

Diagnostic Lab. Tests:

- **Specimens:** blood & stool (urine rare).
- Culture:
- 1) Differential media (MacConkey's, EMB, Deoxycholate, Bismuth sulfite agar).
- 2) Selective media (SS, XLD, Hektoen enteric agar).
- Enrichment media usually for stool (Selenite F broth or tetrathionate broth, incubation (1-2days) →- plated on differential & selective media.
- Biochemical reaction patterns (TSI agar→----- black precipitate).
- Serological tests:
- 1) Agglutination test: serotyping for unknown culture + commercial kit, known sera (anti-O Ags for serogroups salmonellae A, B, C₁, C₂, D & E).
- 2) Widal test (tube dilution agglutination): determination of antibody titer in patient serum. The result as following:
 - a) High titer O (\geq 1:160)- \rightarrow Active infection.
 - b) High titer H (≥ 1:160)- → Passive infection or past immunization.
 - c) High titer Vi (in some carriers).

Immunity:

- Secretory IgA may prevent attachment of salmonellae to intestinal epithelium.
- Circulating Abs to O & Vi are related to resistance of infection →-relapses may occur in 2-3 weeks after recovery in spite of Abs-→ reinfection milder than the 1st infection.

Treatment:

- Enteric fever & bacteremia require antimicrobial therapy but enterocolitis do not, because the clinical symptoms & excretion of the salmonellae may be prolonged by antimicrobial therapy.
- In severe diarrhea, replacement of fluids & electrolytes is essential.
- Therapy: Ampicillin, trimethoprim-sulfomethaxzole or 3ed-generation cephalosporine. In most carriers, the organisms persist in the gall bladder (if gallstones are present) &in the biliary tract. Chronic carriers cured by ampicillin, but in most cases cholecystectomy must be + drug treatment.

Epidemiology:

Carriers: After manifest or subclinical infection, some individuals continue to harbor salmonellae in their tissues for variable length of time (convalescent carriers or healthy permanent carriers). 3% of survivors of typhoid become permanent carriers, harboring the organisms in the gallbladder, biliary tract, or rarely, the intestine or urinary tract.

- The feces of persons who have unsuspected subclinical disease or carriers are a more important source, So food handlers are shedding organisms. The contamination of the following sources is important:
- 1) Water.
- 2) Milk & other dairy products (ice cream, cheese & custard
- 3) Shellfish.
- 4) Dried or frozen eggs.
- 5) Meat & meat products (poultry) or contaminated with feces by rodents or humans.
- 6) Recreational drugs (Marijuana).
- 7) Household pest (dogs, cats, turtles, etc.).
- 8) Animal dyes (carmine) used in drugs, food & cosmetics.

Prevention & Control:

- 1) Sanitary measures must be taken to prevent contamination of food & water.
- 2) Infected poultry, meats & eggs must be thoroughly cooked
- 3) Carriers must not be allowed to work as food handlers.
- 4) Strict hygienic precautions.
- 108

Unit 2: Bacteriology

- 5) Vaccination:
- a) 2 injections of acetone-killed *S. Typhi* followed by a booster injection some months later→----- partial resistance.
- b) Oral administration of a live avirulent mutant *S.Typhi* strain.

Shigellae (shigella)

Natural habitat is the intestinal tract of humans and primates, causes bacillary dysentery.

Morphology & identification:

- Slender G-ve rods, coccobacillary in young culture, facultative anaerobes, non-motile.
- Convex, circular, transparent colonies, non-lactose F.(except *S.sonnei*), mannitol fermenters(except *S. dysenteriae*).
- Antigenic structure: somatic O-Ag (LPS), more than 40 serotypes (share with other enteric bacilli).
- <u>Classification</u>: on biochemical & antigenic structure, pathogenic spp. are: *S.dysenteriae*, *S.flexneri*, *S.boydii*, *S.sonnei*.

Pathogenesis:

The infective dose is 10^3 organisms(10^5 - 10^8 for salmonellae & vibrios), it is limited to the GIT, invasion of the mucosal epithelial cells by inducing phagocytosis, escape from the phagocytic vacuole, multiplication & spread within the cytoplasm then passage to adjacent cells. Bloodstream invasion is rare. **Microabscesses** formation in the wall of the large intestine & terminal ileum lead to necrosis, superficial ulceration, bleeding, & formation of **pseudomembrane** (consists of fibrin, leucocytes, cell debris, a necrotic mucous membrane, & bacteria). **Granulation tissue** fills the ulcers and scar tissue forms. Blood & pus found in stools.

Toxins:

- 1) **Endotoxin:** Causes irritation of the bowel wall.
- Shiga toxin (exotoxin): produced by *S.dysenteriae* type 1(Shiga bacillus) heat-labile, antigenic protein acting as verotoxin of *E.coli* → inhibit sugars & amino acids absorption in the small intestine & acting as neurotoxin → ----- CNS reactions, meningismus & comma → ----- severity & fatal infection of *S.dysenteriae*.

Clinical Findings:

After short incubation period $(1-2 \text{ days}) \rightarrow$ sudden abdominal pain, fever & watery diarrhea. When infection involves the ileum & colon \rightarrow the No. of stools increases (less liquid but contain mucus & blood). In children & elderly, loss of water & electrolytes- \rightarrow dehydration, acidosis & death. More than 50% of adult cases, fever & diarrhea subside spontaneously in 2-5days, few patients- \rightarrow chronic intestinal carrier & recurrent of diseases.

Diagnostic Lab. Test:

Specimens: Fresh stool, mucus flecks & rectal swabs \rightarrow smear & culture.

Smear: Direct microscopic exam. Of stool- \rightarrow large No. of leukocytes & RBC's.

Culture: Using differential media (MacConkey's agar, EMB agar) & selective media (SS agar, Hektoen enteric agar).

Serology: Normal persons have Abs against *Shigella* spp. \rightarrow not used for diagnosis.

Immunity:

Serum IgM (anti-O shigellae Ags) \rightarrow not protect against shigellae infection.

Treatment:

- Multiple drug resistance can be transmitted by R-factor so resistant infections are wide spread.
- Ciprofloxacin, Ampicillin, Tetracycline, Trim.sulfamethasone & Chloramphenicol.

Epidemiology:

S. dysenteriae spread widely.

-Shigellae infections occur in children under 10 years, transmitted from person-person by food, fingers, feces & flies.

Prevention & Control:

Eliminating shigellae from reservoirs by:

- Sanitary control of water, foods & milk; sewage disposal &fly control.
- 2) Isolation of patients & disinfecting of excreta.
- Detection of subclinical cases & carriers especially food handlers.

Antibiotic treatment of infected individuals.