- One of the most important things to know about a variable is its <u>distribution</u>. Knowledge of the probability distribution of the variables provides the clinicians and researchers with a powerful tool for summarization and describing a set of data and for reaching conclusion about population on the basis of a sample drawn from that population. We have several types of distribution in statistics, but the **''normal distribution**" is the most important one.
- A probability distribution defines the relationship between the outcomes and their likelihood of occurrence. We have several types of distribution in statistics:

I. For discrete variables we have

- a) Binomial Distribution: dichotomous outcomes (A-B, heads-tails, yes-no, on-off, is-is not, right-wrong, etc.)
- b) Poisson Distribution Useful for studying rare random events.

II. But the "Normal distribution" "Gaussian

<u>distribution''</u>, for continues variables is the most important one. This is because:

- Many human variables naturally have a "bell shaped" distribution.
- The distributions are tied to probabilities, and it is the probability which will be of interest to us
- If we have a group of continuous variables with certain class interval, we can represent them by histogram and frequency polygon. But suppose we have a group of variables which is huge and the class interval is very small so the frequency polygon will take a shape of very smooth curve & that curve is called "normal distribution curve"

The normal distribution "Gaussian distribution", "Bell Shaped distribution" is the most important

distribution in the statistics, the parameters of this distributions are:

- 1) The mean $(\mu) \rightarrow$ Measure of location.
- **2)** The standard deviation $(\partial) \rightarrow$ Measure of dispersion.

Characteristic of the normal distribution

- 1) Used for the continuous variables, between
- Symmetrical about its mean (µ), ((either side of mean is a mirror image of other side.
- 3) Mean, median, and mode are equal.
- 4) The total area under the curve is equal to one, 50% on the left &50% on the right of a perpendicular erected at the mean.
- 5) The normal distribution is completely determined by the parameters (μ) & (∂). Different values of μ shift the graph along the X-axis, while different values of ∂ shift the graph along the Y-axis (determine the degree of flatness or peakness of the graph).
- 6) $\mu \pm 1\partial \rightarrow 68\%$ of the area.
 - $\mu \pm 2\partial \rightarrow 95\%$ of the area.

 $\mu \pm 3\partial \rightarrow 99.7\%$ of the area.

Different values of μ and δ shift the graph of distribution along X & Y axes. If we change μ while keeping δ constant, the curve will shift to the right on increasing μ & to the left on decreasing μ . On changing δ and keeping μ constant; the curve will become more flat on increasing δ and narrower on decreasing δ without any shifting the curve to any side. $\mu 1 < \mu 2 < \mu 3$

- Since we know the shape of the curve, we can (using calculus) calculate the area under the curve
- The percentage of that area can be used to determine the probability that a given value could be pulled from a given distribution.
- Each normal distribution with its own values of m and s (unit) would need its own calculation of the area under various points on the curve

Ex: If population mean of systolic blood pressure is 120 mmHg with population standard deviation of 10 mmHg. What is the probability of getting a patient with systolic BP a) between 120 and 130 mmHg, b) < 120mmHg, c) < 100 mmHg d) between 120 and 125 mmHg?

Answers:

a) From 120 to 130 we move one δ , so the probability is 34% (0.34) (i.e. half of 68%).

- b) Probability of less than 120 mmHg is 50%.
- c) Probability of less than 100 mmHg is 2.5%.

d) Probability of SBP between 120 and 125 mmHg; we must follow Z scale.

The standard normal distribution "Z-distribution".

It's the normal distribution curve which has a mean of zero and a standard deviation of one $(\mu=0, \& \partial=1)$. \rightarrow Z = x - μ/∂

If we know the population means and population standard deviation, for any value of X we can compute a z-score by subtracting the population mean and dividing the result by the population standard deviation

Properties of Z Distribution (Z-score)

- 90% of the values of a normal variable lie within ± 1.65 sample standard deviations from the sample mean
- 95% of the values of a normal variable lie within ± 1.96 sample standard deviations from the sample mean
- 99% of the values of a normal variable lie within ± 2.58 sample standard deviations from the sample mean

How to Read Z Table ((Must understand Z table, area to the <u>left</u>))

EX: From Z table: Find P ($z \ge 1.58$) P(z < 1.58) = 0.9429 P(z > 1.58) = 1 - 0.9429 = 0.0571

77

<u>Ex:</u>Find p(0<Z<1.23)

Ex: Calculate p(-1.2<Z<0.78) p(-1.2<Z<0.78)= 0.7823-0.1151=0.6672

Ex: Calculate p(-1.2<Z<0.78) p(-1.2<Z<0.78)= 0.7823-0.1151=0.6672

Ex: What is the probability of having a patient with B.P between 110-130 mm Hg? μ =120, ∂ =10. ((Suppose the B.P is normally distributed)).

 $Z = x - \mu / \partial$ = 110-120/10 =-1 = 130-120/10 = +1

P (110≤ x ≤ 130) → P(-1≤ Z ≤+ 1). &From the Z-table, P=0.68.

<u>Ex2</u>: What is the probability of having a patient with B.P above 140mm Hg?

 $Z = x - \mu/\partial$ = 140-120/10 = +2 P(x \ge 140) \rightarrow P (Z \ge +2). &From the Z-table, P=0.023.

Ex: If the total cholesterol values for a certain target population are approximately normally distributed with a mean of 200 (mg/100 mL) and a standard deviation of 20 (mg/100 mL), what is the probability that a person picked at random from this population will have a cholesterol value greater than 240 (mg/100 mL)?

 $Z = x - \mu / \partial = 240-200/20 = 2$

 $P(x > 240) \rightarrow P(Z > 2). = 0.0228 \text{ or } 2.28\%$

Ex: in certain population the mean of SBP (μ =120), and ∂ =10mmHg. What is the probability of having a patient with B.P between 110-130 mm Hg?

- 1) What is the probability of having a patient with B.P between 105-125 mm Hg?
- 2) What is the probability of having a patient with $B.P \le 100 \text{ Hg}$?
- 3) What is the probability of having a patient with B.P ≥ 135 mm Hg?
- 4) What is the probability of having a patient with B.P between 120-140 mm Hg?
- 5) What is the probability of having a patient with B.P between 100-140 mm Hg?
- 6) What is the probability of having a patient with B.P between 90-150 mm Hg?
- 7) What is the probability of having a patient with B.P between ≥ 150 mm Hg?
- 8) What is the probability of having a patient with B.P between ≤150 mm Hg?
- **9**) What is the probability of having a patient with B.P between 140-150 mm Hg?

Lecture 7 - Probability distribution

10)What is the probability of having a patient with B.P between 95-135 mm Hg?

EX: IQ's are normally distributed with mean 100 and standard deviation 15. Find the probability that a randomly selected person has an IQ

- **1**) between 100 and 115
- **2**) More than 135.
- 3) Less than 70.

EX: A survey was done to measure the haemoglobin (Hb) levels among a group of pregnant women attending an ante-natal clinic. 10000 women were screened and the mean Hb was found to be 10.5 gm%.The standard deviation was 0.5. Compute:

- Number of women having Hb level between 10 and 11 gm%
- Number of women having Hb level between 9.5 and 11.5 gm%
- 3) Number of women having Hb level above 10.5 gm%.
- 4) Number of women having Hb level below 9 gm%.
- Number of women having Hb level between 11 gm% and 11.5 gm%.
- Number of women having Hb level below 9 gm% and above 12 gm%.
- 7) What is the probability of selecting a pregnant woman with Hb levels below 10 gm%?

TABLE A-	2 (cor	ntinued) C	umulative	Area from	the LEFT					
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	* .9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890

					Та	ble F					
	No	rmal C	urve A	reas P(z	$\leq z_0$) H	Entries	in the l	Body o	f the Ta	able ar	е
				Area	is Betwe	een - c	o and :				
					1						
	3750										
						0	1.96	1			
	z -1	0.09 -	0.08 - 0.	07 - 0.0	6 -0.05	- 0.04	-0.03	- 0.02	-0.01	0.00 '	Z
- 3	.80 .00	001 .00	001 .000	.0001	.0001	.0001	.0001	.0001	.0001	.0001	- 3.80
- 3	.70 .00	0. 100	001 .000 001 .000	0001	.0001	.0001	.0001	.0001	.0001	.0001	- 3.70
- 3	.60 .00	MI									- 5.00
- 3	.50 .00	02 .00	02 .000	2 .0002	.0002	.0002	.0002	.0002	.0002	.0002	- 3.50
- 3	.40 .00	02 .00	03 .000	3 .0003	.0003	.0003	.0003	.0003	.0003	.0003	- 3.40
- 3.	.30 .00	03 .00	04 .000	5 0006	.0004	0006	0006	0006	0003	.0005	- 3.30
- 3.	20 .00	05 .00	03 .000	8 0008	.0008	.0008	.0009	.0009	.0009	.0010	- 3.20
- 3,	10 .00	07 .00	07 .000	0 10000							- 5.10
- 3.1	00 00	00. 01	100.001	1 .0011	.0011	.0012	.0012	.0013	.0013	.0013	- 3.00
- 2.9	90 .00	4 .00	14 .001	5 .0015	.0016	.0016	.0017	.0018	.0018	.0019	- 2.90
- 2.8	80 .001	.003	.002	1 .0021	.0022	.0023	.0023	.0024	.0025	.0026	- 2.80
- 2.1	70 .001	.001	.0028	8 .0029	.0030	.0031	.0032	.0033	.0034	.0035	- 2.70
- 2.6	50 .00.	6 .00.	.0038	\$.00.19	.0040	.0041	.0045	.0044	.0045	.0047	- 2.60
- 2'5	0 004	8 004	9 0051	0052	0054	0055	0057	0059	0060	0062	2.50
- 2.4	0 .006	4 .006	6 .0068	.0069	.0071	.0073	.0075	0078	-0080	0082	- 2.50
- 2.3	0 .008	4 .008	7 .0089	.0091	.0094	.0096	0099	.0102	.0104	.0107	- 230
- 2.2	0 .011	0.011	3 .0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139	- 2.20
- 2.1	0 .014	3 .014	6 .0150	.0154	.0158	.0162	.0166	.0170	.0174	.0179	- 2.10
- 200	2 015	. 018	8 0102	0107	0.002	0207	0313	0717	0000	0000	
-190	073	023	0744	0250	0256	0267	0212	0274	.0222	.0228	- 2.00
- 1.80) ()294	030	0307	0314	0322	0320	0336	03.14	0251	.0287	- 1.90
- 1.70	.0367	.037	5 .0384	.0392	0401	0409	0418	0427	0476	.0339	- 1.80
- 1.60	.0455	.0465	.0475	.0485	.0495	.0505	0516	0526	0537	0549	- 1.70
								0020	.0007	.0340	- 1.00
-1.50	.0559	.0571	.0582	.0594	.0606	.0618	.0630	.0643	.0655	.0668	- 1 50
- 1.40	.0681	.0694	.0708	.0721	.0735	.0749	.0764	0778	.0793	.0808	-140
-1.30	.0823	.0838	.0853	.0869	.0885	.0901	.0918	0934	.0951	.0968	-130
-1.10	.0055	.1003	.1020	.1038	1056	.1075	.1093	.1112	.1131	1151	-1.20
- 1,10	.11.0	.1190	.1210	.1230	.1251	.1271	.1292	1314	.1335	1357	- 1.10
-1.00	13-9	1401	1422	1.1.14	1.100						
-0.90	1611	1635	1423	1693	.1469	.1492	.1515	.1539	.1562	.1587	- 1.00
-0.80	.1867	1894	1977	19.10	.1 11	.1736	.1762	.1788	.1814	1841	- 0.90
-0.70	2148	2177	2206	1747	.19//	.2005	2033	.2061	.2090	.2119	- 0.80
-0.60	.2451	2483	2514	75.16	00	.2296	.2327	2358	.2389	.2420	- 0.70
					-2/8	611	-26-13	.2676	2709	2743	- 0.60
- 0.50	.2776	2810	.2843	.287-	1017	20.17	2000				
- 0,40	.3121	3156	3192	3228	1764	13(2)	-981	.3015	.3050	.3085	- 0.50
- 0.50	3483	.3520	.3557	1504	1632	3660	2226	.3372	.3419	.3446	- 0.40
- 0.20	38:9	.3897	3936	1971	1012	2009	.3707	.3745	.3783	3821	- 0.30
-0.10	.4247	4286	.4325	4361	1104	.+052	.4090	.4129	4168	4207	-0.20
						4443		.4522 -	4562	.4602	- 0.10
0.00	4641	.4681	.4721	.4761	-1801	19.4.)	1000				
			•			+040	4880	.4920	.4960	.5000	0.00