TIME-VARYING
FIELDS AND

MAXWELL'S
EQUATIONS



FARADAY'S LAW

Faraday professed his belief that 1f a current could produce a magﬁetie

field, then a magnetic field should be able to produce a current.

He wound two separate windings on an iron

toroid and placed a galvanometer in one circuit and a battery in the other. Upon
closing the battery circuit, he noted a momentary deflection of the galvanometer;
a similar deflection in the opposite direction occurred when the battery was
disconnected. This, of course, was the first experiment he made involving a
changing magnetic field, and he followed it with a demonstration that either a
moving magnetic field or a moving coil could also produce a galvanometer
deflection.



Induced Electromotive Force

In terms of fields, we now say that a time-varying magnetic field produces
an electromotive force (emf) which may establish a current in a suitable closed
circuit. An electromotive force is merely a voltage that arises from conductors
moving in a magnetic field or from changing magnetic fields, and we shall define
it below. Faraday’s law is customarily stated as

dd

Equation (1) implies a closed path, although not necessarily a closed conducting
path; the closed path, for example, might include a capacitor, or it might be a
purely imaginary line in space. The magnetic flux is that flux which passes
through any and every surface whose perimeter is the closed path, and d®/dt
is the time rate of change of this flux.

A nonzero value of d®/dt may result from any of the following situations:

1. A time-changing flux linking a stationary closed path
2. Relative motion between a steady flux and a closed path
3. A combination of the two



If the closed path is that taken by an N-turn filamentary conductor, it is
often sufficiently accurate to consider the turns as coincident and let

f=-No @)
M= dt &

where ® is now interpreted as the flux passing through any one of N coincident
paths.

We need to define emf as used in (1) or (2). The emf is obviously a scalar,
and (perhaps not so obviously) a dimensional check shows that it is measured in
volts. We define the emf as

emfzﬁE-dL (3)

%E -dL =0 (electrostatics)



Replacing ® in (1) by the surface integral of B, we have

emf:fE-dL:—ng-dS (4)
dt |

emf:%Ew!L:—f@-dS (5)
g ot

%E -dL =0 (electrostatics)



An example illustrating the applica-
tion of Faraday’s law to the case of
a constant magnetic flux density B
and a moving path. The shorting
bar moves to the right with a veloc-

ity v, and the circuit 1s completed £

through the two rails and an extreme- 1
ly small high-resistance voltmeter. 2\ V) Voltmeter

The voltmeter reading i1s Vix =

—Bvd. x=d
¢=J B-dS r
L]

¢=B-S
® = Byd (1)

From (1), we obtain
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The circular loop conductor shown in Fig. 12-10 lies in the z=0 plane, has a radius of
0.10m and a resistance of 5.0Q. Given B=020sin10’ta, (T), determine the current.

¢=B-S=2x10"nsin 10t (Wb)

u=—E-=—2Jr:-:rs 10t (V)
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A square coil, 0.60m on a side, rotates about the x axis at =60nrad/s in
field B=0.80a, T, @ shown in Fig. 12-16(a). Find the induced voltage.
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Fig. 12-16

Assuming that the coil is initially in the xy plane,
a = wt = 60xt (rad)
The projected area on the xy plane becomes [see Fig. 12-16(b)]:
A = (0.6)(0.6 cos 60nt) (m?)
Then ¢ =BA=0.288cos60mt (WD) and

u=-%=54.3sin60m (V)




