
Non-Fermentative Gram-Negative Rods

Pseudomonas spp

Classification of Bacteria

Characters of *Pseudomonas*

- Gram-negative bacilli belonging to *Pseudomonadaceae*
- Motile by means of a single polar flagellum.
- Non spore forming
- non Capsulated "Polysaccharide capsule"
- Aerobic
- Breakdown glucose by oxidation i.e. Oxidative
- Oxidase and catalase positive
- It has very simple nutritional requirements i.e. non fastidious
- The most important pathogenic organism is Ps. aeruginosa
- Optimum temperature is 37 C, and it is able to grow at 42 C
- It is resistant to high concentrations of salts, dyes, weak antiseptics, and many antibiotics
- Common inhabitants of soil, water, GITe`ewe
- Ps. aeruginosa is opportunistic pathogen and associated with a variety of infections including:

١

Urinary tract infections

- Wound and burn with blue green pus
- Respiratory system infections (Pneumonia)
- Eye infection and may lead to blindness
- Ear infection (external ear or otitis media)
- Meningitis
- A variety of systemic infections
- *Ps. aeruginosa* produce two types of soluble pigments:
 - **Pyoverdin or fluorscein:** It is yellow-green pigment and fluorescent
 - **Pyocyanin**: It is a blue-green pigment and non-fluorescent

Identification of Ps. Aeruginosa

Laboratory diagnosis

Specimen:

Urine, pus, sputum, CSF, blood, skin swap according to the type of infection

Microscopical Examination

- Gram Stain: Gram-negative rods
- Motility Test:
 - Hanging Drop Techniques
 - Semisolid agar medium

Cultural Characteristics

- On Nutrient agar:
 - Colonies are surrounded by bluish green coloration
- On selective media "Cetermide"
 - Pigments are more obvious
- On Blood agar

 β -hemolytic colonies

On MacConkey agar

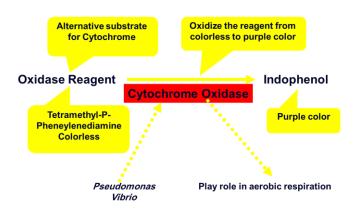
Pale yellow colonies i.e. non lactose fermenters

Ps. aeruginosa able to grow at 42 C for 3 days

Cultural Characteristics

Gram Stain of Pseudomonas

Ps. aeruginosa on cetrimide agar

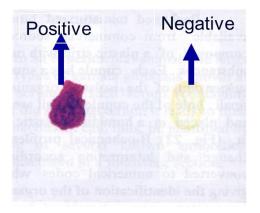


Ps. aeruginosa on Nutrient agar

Biochemical Reactions

- Oxidase positive
- Breakdown glucose oxdatively
- Nitrate Reductase negative
- Gelatinase positive
- Utilize Citrate

Oxidase Test: Principal

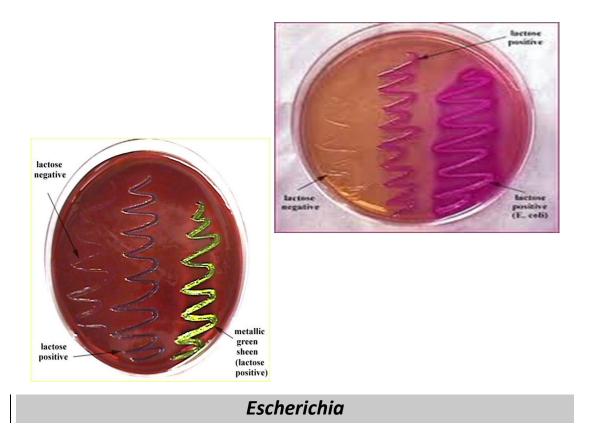

٣

Method:

- hold a piece of the oxidase test paper with forceps and touch onto an area of heavy growth
- Use platinum loop (not used nichrome) or wood stick

Results

- Color change to purple within:
 - \Box 10 seconds = positive
 - □ 10 60 seconds = delayed positive
 - \Box >60 seconds = negative



ENTEROBACTERIACEAE

- Gram negative non-spore forming bacilli.
- Aerobic and facultative anaerobic.
- Grow easily on ordinary media.
- Most are motile with peritrichous flagella .
- All species ferment glucose with production of acid or acid and gas.
- Catalase +ve
- Oxidase –ve
- Inhabit the intestinal tract of man and animals naturally.
- Many species are pathogenic.
- Genera have been defined on biochemical basis.

- Escherichia coli: cause UTI, diarrhea, bacteremia or meningitis.
- Microscopical appearance: Gram-negative short rods. Most strains are motile.
- Cultural characteristics: Colonies on MacConkey agar are pink (lactose fermented with bile precipitation.
- Biochemical reactions: IMViC + + -

IMViC tests Indole

- Enterobacteraerogenes -
- Escherichia coli(pink/red) +

Kovac's reagent detects if tryptophan has been hydrolyzed to indol/tryptophanase

Methyl Red (MR)

- Enterobacter aerogenes(left) -
- E. coli(bright red) +

•Reagent: Methyl red indicator identifies pH change due to mixed acid fermentation

Voges – Proskauer (VP)

• Enterobacter aerogenes +

•E. coli –(left)

•Barritt's reagent Tests for acetoin, precursor to 2,3 butanediol fermentation•Addition of alpha-naptholand KOH

Citrate

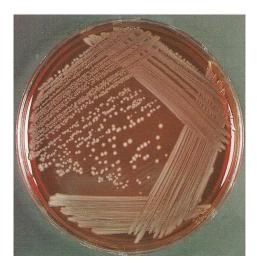
- •E. coli (left green) –
- Enterobacter aerogenes (right royal blue) +

•Reagent: Bromothymol blue indicator tests for ability to use citrate as sole carbon source/citrate permease

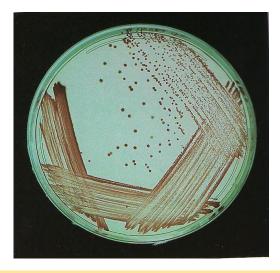
Urease

- E. coli–(left)
- Proteus vulgaris+
- Phenol Red a pH indicator turns tube bright pink because NH3 decreases the pH
- CO(NH3)2+ 2 H2O urease \rightarrow CO2+ H2O + 2 NH3

D.Israa


Klebsiella

- The most pathogenic species is *K. pneumoniae* that causes pneumonia.
- Microscopical appearance: G ve short rods. Non-motile. Capsulated both in tissues and on *in vitro* cultivation.
- Cultural characteristics: Colonies on MacConkey agar, are large, mucoid and show pink color (lactose fermenter)
- Biochemical reactions: IMViC - + +,


Enterobacter

- Is considered as an opportunist. They are frequently isolated from urinary tract infections, septicemia. They are found in soil, water, dairy products & animals & human intestine. The most common species: *E. cloaca, E.aerogenes*.
- Microscopical appearance: G ve short rods, and motile.
- Cultural characteristics: Colonies on MacConkey agar, are large, pink in color (lactose fermented).

Serratia marcescens

- Free living & common opportunistic pathogen in hospitalized patients. Cause pneumonia, bactermia, endocarditic, UTI, meningitis or wound infection.
- Microscopical appearance: G -ve short rods and motile
- Cultural characteristics: Produce a red pigment (prodigiosin) at room temp. Colonies on MacConkey agar are late lactose fermenters, i.e give pink colonies after 48 hr.
- Biochemical reactions: IMViC - + +, TSI Alkaline slant/Acid butt (K/A).

Citrobacter

- Considered as an opportunist. Can cause UTI & bacteremia. G-ve short rods, motile & late lactose fermenters on MacConky agar.
- Biochemical reactions: IMViC V + +, Urease V, TSI Alkaline slant/Acid butt(K/A).

IMViC Reactions

	1	М	Vi	С	
Escherichia coli	+	+	-	-	
Edwardsiella tarda	+	+	-	1 <u>—</u> 1	
Proteus vulgaris	+	+	-	-	
Klebsiella pneumonia	e —	-	+	+	
Klebsiella oxytoca	+	-	+	+	
Enterobacter spp.			+	+	
Serratia marcescens	-	-	+	+	
Citrobacter freundii	-	+	-	+	
Citrobacter koseri	+ Dr.1	+ I.V.Rao MD	-	+	23