مواضيع المحاضرة: MultiSim . ملتيزم .
background image

 

 

 

SPICE / MultiSim Tutorial 

 

1.  Introduction 
 
Cellular phones and computers are just two examples of some of today's extremely 
complex electronic systems.  Such devices contain millions of circuit components, and 
simple trial and error is not an effective way of ensuring that the final product will work 
properly.  As a result, designers often use circuit simulators to verify the performance of 
a circuit before fabrication. 
 
The most popular component level circuit simulator available today is called SPICE 
(Simulation Program with Integrated Circuit Emphasis), which was developed here at the 
University of California, Berkeley, in the 1970s under the guidance of Prof. Pederson. 
Today vendors offer many different versions of SPICE that differ mainly in the user 
interface but are internally very similar to the original “Berkeley SPICE”. This tutorial 
introduces a version of SPICE called MultiSim. 
 
Circuit simulation with SPICE (and MultiSim) involves two steps:  

(1) Enter in the circuit schematic (with MultiSim's graphical user interface). 
(2) Choose the type of analysis and run the simulation. 

 
 
2.  Organization of this Tutorial 

 
1.  Introduction 
2.  Organization 

 
I    Basic Circuit Simulation Techniques in MultiSim 
 

3.  MultiSim Environment 
4.  Schematic Capture of an Example Circuit 
5.  Simulation and Results Display 

 

II   Alternative Forms of Circuit Simulation in MultiSim. 
 

6.  Simulated Instruments 
7.  Using the Breadboard Tool 
8.  Conclusion 

 
 
Notes about this Tutorial: 

•  Before running a simulation, you should always have a general understanding of 

how your circuit works. 

•  In this document, 

Boldface black

 refers to actions you perform on the computer. 

Example:  

Click

 on the 

 menu item. 

 


background image

 
 

 

 

3.  MultiSim Environment 
 
1.  First, you need to log into a lab machine to use MultSim.  Ask the TA in-charge for 

login information.  You may also be able to use MultiSim by logging in remotely. 

2.  Once logged in, 

Double-click

 on the 

 icon on the desktop. If a window appears 

with “Evaluation License” written in the middle of it, 

click

 the Evaluate button. After 

MultiSim finishes loading, you should see the screen shown below in Figure 1.  This 
is called “Capture and Simulate” environment because you “Capture” your schematic 
by drawing it in MultiSim and then you “Simulate” it. 

 

 
Figure 1 also shows the different parts of the MultiSim workspace; the location of the 

toolbars in your MultiSim window may be different. 

 

Figure 1 The most important components in the MultiSim workspace

 

 

The purpose of each toolbar will become clear as you move through this document.  
If you don’t see the toolbars shown above, 

click 

on the View menu and go to 

Toolbars.  Make sure that you at least have the toolbars shown in Figure 2 checked. 


background image

 

 

 

Figure 2 Viewing the toolbars

 

 

4.  Schematic Capture (Entering a Simple Circuit) 
 
To begin, let’s construct the simple circuit shown below in Error! Reference source not 
found.
.  This circuit is composed of a voltage source (battery), a resistor, and a 
potentiometer (variable resistor). 
 

 

 


background image

 

 

 

Figure 3 A simple circuit captured in MultiSim

 

 

I  Adding the Voltage Source (Battery): 

1. 

Click

 on the Power Source Family 

  in the 

Virtual Toolbar

2.  The Power Source Components  

 will pop up. 

3. 

Click 

on the DC Power Source icon 

 and then 

click

 on the workspace to place 

a battery.  Error! Reference source not found. shows the result. 

 

 

 

Figure 4 A DC power source in MultiSim

 

 

To change the value of the power source, 

Double-click 

the battery.  This opens up the 

Power_Sources dialog box shown below. Make sure that the voltage is set to 12 V and 
then press OK. 

 

 


background image

 

 

 

 

Figure 5 Power Sources Dialog box.  Use this to change the value of the battery voltage.

 

II  Adding the Resistor and the Potentiometer 

4. 

Click 

the Basic Components Family 

 in the 

Virtual Toolbar

5.  The Basic Components 

 will pop 

up. 

6. 

Click

 on the Virtual

1

 Resistor 

 tool 

and drag a resistor onto the workspace. Like the battery, you can 

double-click

 

the resistor to change its properties. 

 

7.  Lastly, we must add the potentiometer. In the Basic Components window, 

click 

on the Potentiometer Tool 

 

and drag a potentiometer onto the workspace.  You can increase/decrease the 
resistance on the potentiometer by pressing ‘a’ / ‘Shift+a’ on the keyboard. The 
increase and decrease refers to the resistance between the middle leg and the 
bottom leg of the potentiometer. You can also 

double-click 

the potentiometer to 

open its properties and change the total resistance of the potentiometer or its 
increment / decrement value. 
 

Error! Reference source not found. shows the circuit components placed on your 
workspace.  The “50%” next to the potentiometer means that the resistance between the 
middle leg and bottom leg is 50% of 1 kΩ:  500 Ω.  If you press ‘a’, the resistance will 
increase by 5% (the resistance between the middle leg and the top leg will decrease by 
5%).  Again, you can 

Double-click

 the potentiometer to change the increment 

percentage.  If you move your mouse over the potentiometer, you can also use the slider 
that appears to change its resistance. 
 

                                                 

1

 

MultiSim distinguishes “Virtual” components from “Real” components.  With real components, you place 

a part that has the actual shape of the real component, not a schematic symbol.  You will see examples of 
this in Section 8.

 


background image

 

 

 

 

 

Figure 6 The circuit components are in place

 

III  Adding the Ground 
 

8.  The final component to add is the ground. You cannot simulate the circuit without 

a ground, because SPICE (the underlying simulation engine) uses nodal analysis 
to solve circuits.  The first step in nodal analysis is to pick a ground node.  It does 
not matter where we ground the circuit, but for consistency, let's pick the node at 
the bottom of the circuit as ground. 

9.   

Click

 the Ground tool

 in the Power Source 

Components menu.  Drag the ground to the bottom of the circuit, the result is 
shown in Error! Reference source not found.
 

 

 

Figure 7 Circuit ready for wiring

 

 

10. Connections are placed by clicking on the terminal of the first component, 

moving the cursor the the target, and clicking again. Error! Reference source 
not found.
 shows the results of wiring the 12 V source to the 1 kΩ resistor. 

 


background image

 

 

 

 

 

Figure 8 A wire connects the 12 V source to the 1 kΩ resistor 

 

Complete the wiring as shown in Error! Reference source not found..  Make 
sure you connect the wire from the 1 kOhm resistor to the wiper of the 
potentiometer. 

 

 

 

Figure 9 The wired circuit  

 

To simplify debugging especially of larger circuits you can give the signals 
intuitive names, such as “Vin” and “Vout” and assign different colors to wires 
(e.g. red for power and black for ground). To do so 

right-click

 the wire and 

choose property. Type in the wire name and 

click

 the show box. 

Right-click

 the 

wire again and choose “Segment Color”. Choose a color and press OK. Change 
the wire colors and add intuitive wire names as shown in Figure 10 below. 

 

 

 

Figure 10 The circuit is ready for simulation

 

 

6.  Running the Simulation and Using the Results Display 


background image

 

 

 

 
We are now ready to simulate our circuit. In the laboratory, you would now turn on the 
power use lab instruments, such as the multimeter and oscilloscope, to check voltages 
and currents in your circuit. Circuit simulators are much faster at finding the same result. 
 
From the 

Simulate

 menu, choose 

AnalysesÆDC Operating Point ….

 The DC 

Operating Point Analysis window should pop up (Error! Reference source not found.). 
Next you choose circuit variables for analysis. V(vin) and V(vout) are the voltages and 
wire names you have given, and I(v1) is the current though the voltage supply

2

. Add all 

three variables to the panel on the right. More complex circuits have many more 
variables; in which case you would only choose the ones you are interested in. 

 

 

Figure 11 DC Operating Point Analysis Window

 

 

Click

 the “Simulate” button to perform the simulation. The window shown in Error! 

Reference source not found. appears with the results. With an input voltage of 12 V and 
the potentiometer set at 50% (500

Ω), Vout is 4 V as expected. The current resulting from 

placing 12 V across a total resistance of 1.5k

Ω is 8mA, which we can easily verify with 

Ohm’s Law (V = IR). Since SPICE defines the current flowing into the positive terminal 
of the source as positive but the current actually runs in the opposite direction, it reports 
the result as a negative number. Play with the results by changing the resistance of the 
potentiometer by selecting it and pressing the “a” or “Shift-a” keys and rerunning the 
simulation. 
                                                 

2

 

Voltage sources set to V=0 are the easiest way for determining branch current with SPICE (e.g. 

MultiSim).

 


background image

 

 

 

 

 

 

Figure 12 Simulation result for the DC operating point analysis

 

Analysis of Changing Signals 
Most circuits deal with signals that are changing. SPICE offers three principal analyses 
for this purpose: 
 

1.  DC Sweep 
2.  Transient Analysis 
3.  AC Analysis 

 
We will run each type of analysis on our sample circuit. These forms of analysis will 
appear throughout EE100 and other electronic circuit courses and laboratories. 
 
DC Sweep 
Choose 

SimulateÆAnalysesÆDC Sweep

 and change the parameters so that they 

match the values in Error! Reference source not found..   
 


background image

 

 

 

 

 

Figure 13 Analysis Parameters for DC sweep analysis 

 
Then 

click

 on the Output tab and add V(vin) and V(vout) to the ‘Selected Variables for 

Analysis’ box as shown in Figure 14 

 

 

Figure 14 Analysis Parameters for DC sweep analysis 

 
Finally, 

click

 the Simulate button to obtain the results shown in Figure 15.  

 


background image

 

 

 

 

 

Figure 15 Result of DC sweep analysis 

 
Can you find what percentage the potentiometer has been set to?  Check your answer by 
running a simulation! 
 
In the laboratory we can perform a DC analysis by repeatedly adjusting the input of the 
circuit and then measuring the output with the DMM. What a pain. Isn't MultiSim 
AWESOME! 
Transient Analysis 
Transient analysis evaluates how signals change over time. In the laboratory, you can 
examine this behavior with an oscilloscope. Figure 16 shows the circuit prepared for 
transient simulation.  
 

 

 

Figure 16 Modified circuit for transient analysis

 

 
The voltage source has been replaced with a “Clock Voltage Source” (which can be 

found under the Signal Source Components 

 button as shown in Figure 17). 

 


background image

 

 

 

 

 

Figure 17 Adding the Clock Voltage Source 

 

Double-click 

the clock voltage source and make sure that the voltage is set to 5 V and 

that the frequency is set to 1 kHz.

 

 
The capacitor C1 (which can be found under the Basic 

 button) has been added to 

make the circuit more interesting for transient analysis. You can rotate the capacitor by 

Right-clicking 

it and selecting ‘90

o

 Clockwise’ or ‘90

o

 CounterCW’.  

 
Next, choose 

SimulateÆAnalysesÆTransient Analysis… 

and use the parameters 

from Figure 18. Make sure that V(vin) and V(vout) are in the ‘Selected variables for 
analysis’ box under the Output tab. 

Click 

the Simulate button! The simulation results 

should match those shown in Error! Reference source not found.9. 

 

 

 

Figure 17 Transient analysis parameters

 

 


background image

 

 

 

 

 

Figure 18 Transient analysis results 

AC-Analysis 
The AC-analysis directly computes the frequency response of a circuit and draws the 
Bode Plot (you may want to revisit this section later if Bode Plots have not been covered 
yet in the lecture). Error! Reference source not found.9 shows the sample circuit 
prepared for AC analysis. Notice that the clock voltage source has now been replaced by 
an AC voltage source. Like the clock voltage source, this can be found in the Signal 
Source Components Group.  
 
Next, choose 

SimulateÆAnalysesÆAC Analysis… 

and use the parameters from Figure 

20. Make sure that only V(vout) are in the ‘Selected variables for analysis’ box under the 
Output tab. 

Click 

the Simulate button! The simulation results should match those shown 

in Figure 21. 
 

 

 

Figure 19 Circuit for AC analysis

 


background image

 

 

 

 

 

 

Figure 20 AC analysis simulation parameters

 

 

 

Figure 21 AC analysis simulation results for V

out

 

 


background image

 

 

 

 
 
 

II Alternative Ways of Circuit Simulation in MultiSim 
 
7. Simulated Instruments 
 
This section describes an alternative way to perform simulations with MultiSim that more 
closely resembles what you would do in the laboratory. Although this procedure may be 
more intuitive at first, similar to real lab work, it generally takes more time than the 
simulation approach described in Section 6. 
 
This method involves using virtual instruments created in MultiSim that look and work 
just like those in the laboratory.  To take any measurements from a simulation, we first 
need to add instruments. Hence your simulation environment is a step closer to your real 
lab environment. 
 
Let’s measure the voltage drop across the potentiometer. 
 

1.  First remove the capacitor and replace the AC voltage source with the original 

DC voltage source. Next, 

Click

 the Agilent Multimeter 

 in the Instruments 

Toolbar and drag the multimeter onto your workspace.  Error! Reference 
source not found.
2 shows the result. 

 

 

 

Figure 22 A multimeter placed on to workspace

 

 

Now, 

Double-click

 the multimeter to open up the instrument’s front panel.   

 


background image

 

 

 

 

 

Figure 23 The Agilent 34401A Simulated Multimeter front panel 

 

Notice how the simulated multimeter is the same as the one on your workbench!  

Click

 the 

 button to turn on the instrument.  You will be measuring DC 

voltage, so 

Click

 the 

 button on the instrument.  Error! Reference source 

not found.4 shows what you should get. 

 

 


background image

 

 

 

Figure 24 The Multimeter is set to the correct measurement mode

 

 

Lastly, draw wires from the multimeter terminals to the circuit as shown in 
Error! Reference source not found.5. As you make the connections, MultiSim 
highlights the terminals on the frontpanel. 

 

 

 

Figure 25 Ready for simulation

 

2.  To simulate the circuit, 

Click

  the 

 button in the 

Simulation Toolbar

.  

Error! Reference source not found.6 shows the result. 

 

 


background image

 

 

 

 

Figure 26 The simulation result

 

 

One of the most powerful features of MultiSim is its interactive nature.  Change 
the resistance of the potentiometer by pressing “A” or Shift+A and note how the 
multimeter readings change (you may need to wait a couple of seconds for the 
multimeter to register the change).  Change the potentiometer resistance all the 
way to 1 kΩ (100%).  What is the output voltage?  Does this agree with your 
intuition? Hint:  Think about what happens to the voltage divider formula when 
R1 = R2. 

 
8.  Using the Breadboard Tool 
 
If you have trouble in the laboratory mapping circuit diagrams to the solderless 
breadboard, this section is for you. The breadboard tool allows you to see your circuit as 
if you had physically constructed it in lab. This tool is invaluable for large circuits (like 
your project) because it can help you plan an organized layout of the components before 
you actually build your circuit. Similar to using MultiSim's simulated instruments, 
though, this process tends to be time consuming. So once you are comfortable with 
schematic diagrams, you should probably forgo using the simulated breadboard tool. 
 
We will try the breadboard tool with our simple DC circuit from Section 5.  First, delete 
the multimeter from your circuit (be sure to turn of the simulation by pressing the 

 

button before you try and delete the multimeter). Although you could wire the multimeter 
on the breadboard, it is inconvenient and unnecessary.  The circuit to be wired should 
look like Error! Reference source not found.7. 
 

 

 

Figure 27 The simple DC circuit from the previous section

 

 

1. 

Click

 on the Breadboard icon 

 in the 

Main Toolbar

 to open the Breadboard 

view.  Error! Reference source not found.8 shows the breadboard view. 

 


background image

 

 

 

 

 

Figure 28 The Breadboard view in MultiSim

 

 

The tray at the bottom has all of the circuit elements in your schematic. For us, 
that includes a battery, a potentiometer and a resistor. You can change the size of 
your breadboard by 

clicking

 

 and then selecting 

 
You can rotate the breadboard by moving the cursor outside of the breadboard or to the 
middle of the breadboard until it changes to a set of double arrows. 

Click

 and drag the 

mouse to rotate the breadboard. If you hold the middle-mouse button, you can drag the 
mouse to move or translate across your breadboard. If you move the cursor over any 
other area of the breadboard, you get a small wire pointer. Use this tool to place wires on 
the breadboard. 

Click

 one slot on the breadboard and drag a wire to another slot. Error! 

Reference source not found.9 shows a wire on the breadboard. MultiSim highlights the 
point on the breadboard that you are wiring to, which makes wiring easier when you have 
a lot of components on the breadboard. 

 

 

 

Figure 29 Breadboard wiring in MultiSim

 

 

To change the wire color, 

click

 the BreadBoard Wire Color 

 icon in the top 

toolbar.  It is a good idea to stick to the wire colors you followed when wiring the 
schematic. 


background image

 

 

 

 

2. 

Click

 and drag the battery from the bottom tray to the breadboard.  Use 

Ctrl+R

 to 

rotate the battery so the position is as shown in 30. 

 

 

 

Figure 30 The battery is placed on the breadboard.  We are using the outer connectors for the power, 
which is the convention followed when using a breadboard.

 

 

3.  Place the resistor and potentiometer as shown in Error! Reference source not 

found.1.  Once you place all of the components, the tray disappears.  You can use 
the Zoom icons 

 on the top toolbar to get a better look at the components. 

 

 

 

Figure 31 Components have been placed on the breadboard.

 

 


background image

 

 

 

4.  Wire the components as shown in Error! Reference source not found.2.  Again 

it is prudent to follow the color convention you used on the schematic. As you 
wire, MultiSim actually highlights the connection end-point.  Remember to draw 
the wire from the 1 kΩ resistor to the wiper (middle-leg) of the potentiometer. 

 

 

 

Figure 32 Wiring complete

 

5.  A powerful feature of the MultiSim breadboard tool is the DRC (Design-Rules-

Check) and Connectivity check. DRC checks if you have wires on the breadboard 
that are not on the schematic. Connectivity checks if your components are 
actually connected to each other. 

 

Let's run the DRC and Connectivity check. 

Click

 the Perform DRC and 

Connectivity check icon 

 in the top toolbar.  The status window at the bottom 

shows the results, which should match Error! Reference source not found.3. 

 

 

 


background image

 

 

 

Figure 33 Results from the DRC and Connectivity check

 

 

6.  Let's introduce a connectivity error. Delete the wire connected to the positive 

terminal of the battery (the red wire). The result is shown in Error! Reference 
source not found.
4. 

 

 

 

 

 

Figure 34 A Connectivity error has been introduced

 

 

If you rerun the DRC and Connectivity check, you should get a whole bunch of 
Connectivity errors. 
 

7.  Now let's introduce a design error.  Rewire the positive terminal of the battery but 

short the 1 kΩ resistor by adding a wire in parallel with it.  The result is shown in 
Error! Reference source not found.5. 

 


background image

 

 

 

 

 

 

 

Figure 35 A Design error

 

 

If you rerun the DRC and Connectivity check, you will get a bunch of Design 
errors.  Delete the extra wire to remove the problem. 
 
 

In this section you saw how you to use the breadboard tool to quickly wire your circuit on 
a virtual breadboard.  The main purpose of this tool is to give you an idea of the 
component layout on the breadboard.  For a simple example like this, using the tool is 
overkill.  But for more complicated circuits like your class project, the breadboard tool 
may be invaluable in helping you plan out your component layout. 
 
The Concept of a Ground 
Nevertheless, this simple circuit does introduce a very powerful concept.  Notice that we 
did not place a ground on the breadboard and no error occurred. Hopefully, this rather 
subtle point help clarifies the concept of a ground: it is just a symbol on your circuit that 
indicates your reference node.  A circuit does not need to have an explicit ground 
connection to Earth (unless you are dealing with very high voltages and want to provide a 
safe return path). Many circuits do not have any explicit ground connection to Earth 
8. Conclusion 
 
This document has barely scratched the surface of MultSim, and there are many more 
powerful tools that are a part of this version of SPICE. Hopefully this document did give 
you a strong start in circuit simulation using MultiSim.  The best way to learn is to 


background image

 
 

 

 

experiment, don’t be afraid to try out complicated circuits and MultiSim’s new features. 
 
 




رفعت المحاضرة من قبل: Rashad HopeMaker
المشاهدات: لقد قام 10 أعضاء و 330 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل