background image

HEMOPOIESIS

BY
Dr.  Suhair Majeed


background image

HEMOPOIESIS :

Blood cells have a limited life span, and, as 

a result, they are continuously replaced in the 
body by a process called hemopoiesis. In this 
process, all blood cells are derived from a 
common stem cell in red bone marrow. 
Because the stem cell can produce all blood 
cell types, it is called the pluripotential
hemopoietic stem cell.


background image

STEM  CELLS 

:

Are pluripotential cells that can divide 

continuously and whose daughter cells form 

specific , irreversibly differentiated cell  types.        

They  reside in the medulla of the bone(bone 

marrow) ,and have the unique ability to give rise to 

all of the different mature blood cell types and 

tissues.

self -renewing cells : when they proliferate,at

least , some of their daughter cells remain as 

(stem cells ),so the pool of stem cells not become 

depleted.

.


background image

CONT.

Other daughters of stem cells (myloid and 

lymphoid progenitor cells), they can commit to 
any of the alternative differentiation pathways 
that leads to the production of one or more 
specific types of blood cells ,but they can not  
self-renew.


background image

CONT

.

Before maturation and release into the 

blood stream, the stem cells from each line 
undergo numerous divisions and intermediate 
stages of differentiation . 

Myeloid stem cells   develop ed in red bone 

marrow and give rise to erythrocytes, eosinophils, 

neutrophils, basophils, monocytes, and 

megakaryocytes..


background image

CONT.

Lymphoid stem cells  also developed in red 

bone marrow. Some lymphoid cells remain in the 
bone marrow, proliferate, mature, and  become B 
lymphocytes. Others leave the bone marrow and 
migrate via the blood stream to   lymph nodes and 
the spleen, where they proliferate and 
differentiate into B lymphocytes.


background image

CONT.

Other undifferentiated lymphoid cells migrate 

to the thymus gland, where they proliferate 

and differentiate into  T lymphocytes. Afterward, T 

lymphocytes enter the  blood stream and migrate 
to specific regions of peripheral lymphoid organs.

Both B and T lymphocytes reside in numerous 

peripheral lymphoid tissues, lymph nodes, and 
spleen. Here, they initiate immune responses 
when exposed to antigens. 


background image

HEMOPOIETIC TISSUES :

Specialized CT derived from mesenchyme ,

responsible for the production of new blood cells.
There are 2 types:

Myeloid Tissue (red bone marrow)_ responsible 

for the production of most blood cell types.

LymphaticTissue(thymus,etc.)_responsible

for

formation of T- lymphocytes, proliferation of B-
lymphocytes,immune defences.

.


background image

SITES  OF  HEMOPOIESIS :

Hemopoiesis occurs in different organs of the 

body, depending on the stage of development. In 

the embryo, hemopoiesis initially occurs in the 

yolk sac and later in the liver, spleen, and lymph 

nodes.

After birth, hemopoiesis continues almost 

exclusively in the red marrow of different bones 

(in the newborn, all bone marrow is red).


background image

CONT.

The red bone marrow is highly cellular and 

consists of hemopoietic stem cells and precursors 

of different blood cells. Red marrow also contains 

a loose arrangement of fine reticular fibers. 

In adults, red marrow is found primarily in the 

flat bones of the skull, sternum and ribs, 
vertebrae, and pelvic bones. The remaining 
bones, normally the long bones, gradually 
accumulate fat, their marrow becomes yellow, and 
they lose hemopoietic functions.


background image

HEMOPOIESIS


background image

ERYTHROPOIESIS:

Stages of development :

A- immature  red cell  precursors :

1- proerythroblast
2- basophilic erythroblast 

B- mature  red blood precursor  cells :

3- polychromatic erythroblast
4- orthochromatic erythroblast
5- polychromatophilic erythrocyte (reticulocyte)
6- erythrocyte


background image

ERYTHROPOIESIS (STAGES )

In normal state, the balance of production and 

destruction is maintained at  

constant rate .

The earliest recognizable erythroid precursor 

seen in the bone marrow is large basophilic 

staining cell ,Contains a single large well defined, 

rounded nucleus,ribosomes, mitochondria and 

golgi apparatus


background image

CONT.

As the early precursor cell matures,

its 

nucleus increases in size. As maturation goes 

on cell becomes smaller and more eosinophilic

indicating hemoglobin.

During 

intermediate stages of maturation,

cytoplasm becomes polychromatic indicating 

mixture of basophilic proteins and eosinophilic

hemoglobin.


background image

CONT.

Further maturation

, hemoglobin synthesis 

continue and cytoplasm becomes entirely 
eosinophillic.

Late stages of maturation

, hemoglobin is 

abundant.few mitochondria and ribosomes are 
present., nucleus is small dense and well 
circumscribed.


background image

STAGES  OF  ERYTHROPOIESIS


background image

1- PROERYTHROBLAST

:

first erythrocyte precursor produced directly 

from myeloid stem cell. They are characterized 
by  their size , and by having a very  dense 
nuclear structure (large nucleus ),  with a 
narrow layer of  cytoplasm (basophilic 
cytoplasm ).


background image

PROERYTHROBLAST


background image

PROERYTHROBLAST


background image

2- BASOPHILIC  ERYTHROBLAST :

a strongly basophilic cytoplasm and a 

condensed nucleus . Smaller than proerythroblast

The basophilia of these two cell types is caused 

by the large number of polyribosomes involved in 
the synthesis of hemoglobin.


background image

BASOPHILIC  ERYTHROBLAST


background image

BASOPHILIC  ERYTHROBLAST


background image

PROERYTHROBLAST VS BASOPHILIC 
ERYTHROBLAST


background image

3- POLYCHROMATIC   ERYTHROBLAST :

Also called intermediate normoblast . Last 

precursor cell capable of mitosis. Smaller than 
basophilic erythroblasts .

Cytoplasm appears greyer because of presence 

of haemoglobin .


background image

POLYCHROMATIC  ERYTHROBLAST


background image

4- ORTHOCHROMATIC   ERYTHROBLAST  :

Also  called late normoblast .Incapable of 

cell division  , the nucleus continues to 
condense and  an eosinophilic cytoplasm due 
to  abundant hemoglobin , this cell has a series 
of cytoplasmic protrusions and expels its 
nucleus, 


background image

ORTHOCHROMATIC   ERYTHROBLAST  


background image

5- POLYCHROMATOPHILIC ERYTHROCYTE :

Also called reticulocyte .It’s formed when 

the nucleus is extruded from the normoblast .

Named reticulocyte ,because the clustering 

of ribosomes forms a  reticular  network.

Can carry oxygen and enter the blood stream 

,they found in low concentrations in  normal  
blood .


background image

POLYCHROMATOPHILIC ERYTHROCYTE   
OR RETICULOCYTE


background image

6- ERYTHROCYTE  :

The final product of erythropoiesis is the 

erythrocyte  ,and it’s released from bone 
marrow into  the circulation


background image

ERYTHROPOIESIS


background image

NUTRITIONAL FACTORS

Normal erythrocyte production requires 

protein, copper, iron, folic acid and vitamins B6 
and B12. Deficiencies lead to inadequate 
production of haemoglobin.


background image

REGULATION :

Production of 

erythrocytes

is regulated by 

erythropoietin (EPO) which is produced in the yolk 
sac, 

liver

and kidney from embryonic life until 

early neonatal life. In the adult it is produced only 
in the kidneys. Erythropoietin is a glycoprotein 
hormone . Normal levels are low with sufficient 
amounts to maintain a basal level of new 
erythrocyte production. If blood oxygen 
concentration falls, the release of erythropoietin 
rises.


background image

DEVELOPMENT  OF  GRANULOCYTES


background image

GRANULOPOIESIS

Committed myeloid stem cells differentiate 

into three types of cells, neutrophils, Basophils
and eosinophils


background image

STAGES  OF  DEVELOPMENT

A- immature white cell precursors :

1-myeloblasts
2-promyelocytes

B-partly  mature white cell precursors :

1-myelocytes
2- metamyelocytes

C-mature  neutrophils :

1-band  cells
2-segmented  neutrophils


background image

1- MYELOBLASTS :

-The least mature cells in the granulocyte 

lineage.Mononuclear,

- round –to –ovoid  cells.
- Fine  reticular nuclear structure and a  

narrow layer of basophilic cytoplasm without 
granules


background image

MYELOBLAST


background image

2- PROMYELOCYTE:

Are the product of myeloblast division .Usually 

grow larger than their progenitor cells .Nucleus 
is eccentric .Wide layer of basophilic cytoplasm.


background image

PROMYELOCYTE


background image

3- MYELOCYTES :

Are direct prduct of promyelocyte mitosis ,
Smaller than their progenitors.

Ovoid nucleus ,cytoplasm relatively basophilic


background image

MYELOCYTE


background image

NEUTROPHILIC MYELOCYTE VS
EOSINOPHILIC MYELOCYTE


background image

4- METAMYELOCYTES :

Produced from final myelocyte division .
They are unable to divide ,from this stage ,only 

further maturation of the nucleus occurs .

Nucleus slowly take on  a  kidney –bean shape.
Metamyelocyte is distiguished from a myelocyte

by  incipient  lobe formation .


background image

METAMYELOCYTE


background image

5- BAND  CELLS :

Represent further development of 

metamyelocytes .

The beginings of segmentation may be 

visible, but the constriction should never cut 
more than two – thirds of the way across the 
nucleus .


background image

BAND  CELL


background image

6- SEGMENTED  NEUTROPHILS :

represent final stage in the lineage .

Nuclear segments are connected  by narrow 

chromatin bridges.

Cytoplasm  is soft pink to colorless. 


background image

THROMBOPOIESIS

Megakaryocytes differentiate from myeloid 

stem cell and are responsible for production of 
platelets.

THREE STAGES OF MATURATION OF 

MEGAKARYOCYTES

1-Basophilic stage, megakaryocyte is small, has 

diploid nucleus and abundant basophilic 
cytoplasm.


background image

CONT.

2.Granular stage, here the nucleus is more 

polypoid, cytoplasm is more eosinophilic and 

granular

3.Mature stage, megakaryocyte is very large, with 

approx 16-32 nuclei, abundance of granular 

cytoplasm. It undergoes shedding to form 

platelets.


background image

MEGAKARYOCYTES :

-Reside in bone marrow  .

-Cytoplasm with  granules is pinched off  from 

megakaryocytes to  form thrombocytes .

-Humoral factors regulate the increase of 

megakaryocytes and  the release of  
thrombocytes when more are needed 
(e.g.,bleeding or increased thrombocytes
degradation ).


background image

MEGAKARYOCYTE


background image

MEGAKARYOCYTE


background image

REGULATION

Thrombopoietin

is a glycoprotein hormone produced mainly 

by liver and kidney that regulates the 
production of platelets in bone marrow. 

It stimulates the production and 

differentiation of Megakaryocytes


background image

PRODUCYION OF  MONOCYTE :

The monoblast is a committed progenitor cell 

that is  identical to the myeloblast in its 
morphology.

Further differentiation leads to the 

promonocyte, a large cell  with a basophilic

cytoplasm and a large, slightly indented nucleus.    

Promonocytes divide twice in the course of their 
development into monocytes.


background image

CONT.

an extensive Golgi complex in which 

granule condensation can be seen to be taking 
place.

These granules are primary lysosomes, 

which are observed as fine azurophilic granules 
in blood monocytes.

Mature monocytes enter the bloodstream, 

circulate for about 8 hours, and then enter the 
connective tissues,where they mature into 
macrophages and function for several months.


background image

2- LYMPHOPOIESIS :

Circulating lymphocytes originate mainly in 

the thymus and the peripheral lymphoid organs 
(spleen, lymph nodes, tonsils, etc). It is probable,  
that all lymphocyte progenitor cells originate in 
the bone marrow. Some of these relatively 
undifferentiated lymphocytes migrate to the 
thymus, where they acquire the attributes of T 
lymphocytes. Later, T lymphocytes populate 
specific regions of peripheral lymphoid organs.


background image

CONT.

Other bone marrow lymphocytes remain in the 

marrow, differentiate into B lymphocytes, and 
then migrate to peripheral  lymphoid organs 
where they inhabit and multiply in their own 
special compartments.

The first identifiable progenitor of lymphoid 

cells is the lymphoblast, a large cell capable of  
dividing two or three times to form 
prolymphocytes.


background image

CONT.

These latter cells are smaller and have  more 

condensed chromatin but none of the cell-
surface antigens that mark prolymphocytes as T 
or B lymphocytes. In the thymus or bone marrow, 
these cells synthesize cell-surface receptors 
characteristic of their lineage, but they are not 
recognizable as distinct cell types using routine 
histologic procedures.


background image

B –CELL  

Found in bone marrow ,then differentiate into 

B- cells .

--Maturation culminates in migration of B –

lymphocytes to other lymphoid organs and 
tissues (e.g ,spleen ,liver ,tonsils ,lymph nodes).

--When it recognizes an  antigen in a  lymphoid 

organ ,it proliferate and differentiate into 
plasma cell (antibody forming cells ) .


background image

T – CELL   

Leaves the bone marrow and settles in 

thymus ,to produce thymocyte cells .

Then thymocytes differentiate into :-

-T- helper 
-T- cytotoxic
-T-memory
-T-suppressor


background image

CONT.

Enter the blood stream and migrate to specific 

regions of periphral lymphoid organs .


background image

THANK     YOU




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام 3 أعضاء و 91 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل