background image

 بسم هللا الرحمن الرحيم

Tubular function


background image

TUBULAR FUNCTION

General Considerations 

• The amount of any substance (X) that is filtered is the product of 

the 

GFR

and the 

plasma level of the substance 

(C

ln

P

X

).

• The tubular cells may add more of the substance to the filtrate 

(

tubular secretion

), may remove some or all of the substance from 

the filtrate (

tubular reabsorption

), or may do both. 

• The amount of the substance excreted per unit time (U

X

V.) equals 

the amount 

filtered plus

the 

net amount transferred

by the 

tubules.

• This latter quantity is conveniently indicated by the symbol T

X

• The 

clearance

of the substance 

equals

the GFR if there is no net 

tubular secretion or reabsorption, 

exceeds

the GFR if there is net 

tubular secretion, and is 

less than 

the GFR if there is net tubular 

reabsorption. 


background image

Tubular function


background image

Mechanisms of Tubular 

Reabsorption & Secretion

• Small proteins 

and some 

peptide

hormones are 

reabsorbed in the 

proximal

tubules by 

endocytosis

.

• Other substances are secreted or reabsorbed in the 

tubules by 

passive diffusion 

between cells and through 

cells by 

facilitated diffusion 

down chemical or 

electrical gradients or 

active transport 

against such 

gradients .

• Movement is by way of 

ion channels

exchangers

cotransporters

, and 

pumps

Mutations

of individual 

genes

for many of them cause 

specific syndromes such , 

Bartter's

syndrome, and 

Liddle's

syndrome, and a large number of mutations 

have been described.


background image

Mechanism for Na

+

reabsorption in the proximal tubule. Solid lines indicate active transport;

dashed lines indicate cotransport; and the dotted line indicates passive diffusion.
Note that Na

+

moves from the lumen into the cells by cotransport and that Na

+

and H

2

diffuse into the tubular lumen at the intercellular tight junctions. 


background image

Mechanisms of Tubular 

Reabsorption & Secretion

• It is 

important to note 

that the 

pumps 

and 

other units 

in the 

luminal membrane are different from those in the basolateral

membrane.

• It is this 

different distri-bution

that makes possible net movement 

of solutes across the epithelia. 

• Like transport systems elsewhere, renal active transport systems 

have a maximal rate, or 

transport maximum (Tm),

at which they 

can transport a particular solute.

• Thus, the 

amount

of a particular solute 

transported

is 

proportionate to the amount present up to the Tm for the solute

but at higher concentrations

, the transport mechanism is saturated

and there is no appreciable increment in the amount transported.

• However, the Tms for 

some systems are high

, and it is difficult to 

saturate them


background image

Mechanisms of Tubular 
Reabsorption & Secretion

• It should also be noted that the tubular epithelium, like 

that of the small intestine and gallbladder, is a 

leaky 

epithelium

in that the tight junctions between cells 

permit 

the passage 

of some water and electrolytes.

• The 

degree

to which leakage by this 

paracellular pathway

contributes

to the 

net flux 

of fluid and solute 

into and out 

of the tubules is controversial since it is difficult to 

measure, but current evidence seems to suggest that it is a 

significant factor.

• One indication of this is that 

paracellin-1

, a protein 

localized to tight junctions, is related to Mg

2+

reabsorption, 

and a loss-of-function mutation of its gene causes 

severe 

Mg

2+

and Ca

2+

loss in the urine. 


background image

Mechanism for Na

+

reabsorption in the proximal tubule. Solid lines indicate active transport;

dashed lines indicate cotransport; and the dotted line indicates passive diffusion.
Note that Na

+

moves from the lumen into the cells by cotransport and that Na

+

and H

2

diffuse into the tubular lumen at the intercellular tight junctions. 


background image

Renal handling of various plasma constituents
in a normal  adult human on an average diet.


background image

Na

+

Reabsorption

• The 

reabsorption

of 

Na

+

and Cl

-

plays a major role in body electrolyte 

and water metabolism .

In addition, Na

+

transport is 

coupled

to the movement of 

H

+

, other 

electrolytes

glucose

amino acids

organic acids

phosphate

, and other 

substances across the tubule walls. 

• The principal 

cotransporters

and 

exchangers

in the various parts of the 

nephron are shown in table.

In the 

proximal

tubules, the 

thick

portion of the ascending limb of the 

loop of Henle, the 

distal 

tubules, and the 

collecting ducts

, Na

+

moves 

by 

cotransport or exchange 

from the tubular lumen into the tubular 

epithelial cells down its 

concentration and electrical 

gradients and is 

actively pumped 

from these cells into the interstitial space. 

• Thus, Na

+

is actively transported out of all parts of the renal tubule 

except the thin portions of the loop of Henle.

• Na

+

is pumped into the interstitium by 

Na

+

-K

+

ATPase

.

• It extrudes 

three Na

+

in exchange for 

two K

+

that are pumped into the 

cell. 


background image

Transport proteins involved in the movement of Na

+

and Cl

-

across

the apical membranes of renal tubular 

cells


background image

Na

+

Reabsorption

• The tubular cells are connected by 

tight junctions 

at their luminal edges, 

but there is space between the cells along the rest of their lateral borders.

Much of the Na

+

is actively transported into these extensions of the 

interstitial space, the 

lateral intercellular spaces

.

Proximal tubular reabsorbate is,

slightly hypertonic

and water moves 

passively along the 

osmotic gradient 

created by its absorption into tubular 

epithelial cells.

It is now known that the 

apical membranes of proximal tubule cells 

contain water channels 

which aid the movement of water .

From the cells, 

the water moves into the lateral intercellular spaces

• The rate at which 

solutes and water move into the capillaries 

from the 

lateral intercellular spaces and the rest of the interstitium is determined 

by the 

Starling forces

determining movement across the walls of all 

capillaries, ie, the 

hydrostatic and osmotic

pressures in the interstitium

and the capillaries .

Na

+

and H

2

leak back 

to the tubular lumen via the 

intercellular 

junctions

, especially when the lateral intercellular spaces are distended. 


background image

Glucose Reabsorption

• Glucose

amino acids

, and 

bicarbonate

are reabsorbed 

along with Na

+

in the early portion of the 

proximal tubule 

.

• Farther along the tubule, 

Na

+

is reabsorbed with Cl

-

• Glucose is typical of substances removed from the urine by 

secondary active transport

.

• It is filtered at a rate of approximately 100 mg/min .
• Essentially 

all of the glucose is reabsorbed

, and no more 

than a few milligrams appear in the urine per 24 hours. 

• The amount 

reabsorbed

is proportionate to the amount 

filtered 

and hence to the plasma glucose level (P

G

) times 

the GFR 

up to 

the transport maximum (Tm

G

); but when the 

Tm

G

is exceeded, the amount of glucose in the urine rises . 

• The Tm

G

is about 375 mg/min in men and 300 mg/min in 

women.


background image

Top: Relation between the plasma level (P) and excretion (UV.) of 
glucose and inulin. Bottom: Relation between  the plasma 
glucose level (P

G

) and amount of glucose  reabsorbed (T

G

)


background image

Glucose Reabsorption

• The 

renal threshold

for glucose is the plasma 

level at which the glucose first appears in the 
urine in more than the normal minute amounts.

• However, the actual renal threshold is about 200 

mg/dL of arterial plasma, which corresponds to a 
venous level of about 180 mg/dL .


background image

Glucose Transport

Mechanism

• Glucose reabsorption in the kidneys is similar to 

glucose reabsorption in the intestine . 

• Glucose and Na

+

bind to the common carrier 

SGLT 2

in 

the luminal membrane , and 

glucose is carried into the 

cell as Na

+

moves down its electrical and chemical 

gradient.

The Na

+

is then pumped out of the cell into the lateral 

intercellular spaces, and the glucose is transported by 

GLUT 2

into the interstitial fluid.

• Thus, glucose transport in the kidneys as well as in the 

intestine is an example of 

secondary active transport


background image

Glucose Transport
Mechanism


background image

Thank you




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام 3 أعضاء و 56 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل