background image

بسم هللا الرحمن الرحيم

Water  excretion


background image

WATER EXCRETION

• Normally, 

180 L

of fluid is filtered through the 

glomeruli each day, while the average daily urine 
volume is about 

1 L

.

• The same load of solute can be excreted per 24 

hours in a urine volume of 

500 mL

with a 

concentration of 

1400 mosm/kg 

or in a volume of 

23.3 L

with a concentration of 

30 mosm/kg 

.

• These figures demonstrate two important facts:

– first, that at least 

87%

of the filtered water is 

reabsorbed, even when the urine volume is 23 L; and 

– second, that the reabsorption of the 

remainder

of the 

filtered water can be 

varied

without affecting total 

solute excretion. 


background image

Alterations in water metabolism produced by 
vasopressin in humans. In each case, the 
osmotic load excreted is 700 mosm/d.


background image

WATER EXCRETION

• Therefore, when the urine is concentrated

water is retained in excess of solute

; and when 

it is dilute, water is lost from the body in 
excess of solute.

• Both facts have great importance in the 

body 

economy 

and the regulation of the 

osmolality

of the body fluids.

• A 

key regulator 

of water output is 

vasopressin 

acting 

on the collecting ducts.


background image

Aquaporins

• Research  indicates that rapid diffusion of 

water across cell membranes depends on 

water channels

made up of proteins called 

aquaporins

.

• Four aquaporins

—aquaporin-1, -2, -5, and -

9—have been characterized in humans.

• Most are found in the 

kidneys

, though 

aquaporin-9 is found in human 

leukocytes

liver

lung

, and 

spleen

; and aquaporin-5 is 

found in human 

lacrimal glands


background image

Proximal Tubule

• Many substances are 

actively transported 

out of the 

fluid in the proximal tubule, but fluid obtained by 

micropuncture remains essentially 

isosmotic

to the end 

of the proximal tubule .

• Therefore, in the proximal tubule

, water moves 

passively 

out of the tubule along the 

osmotic gradients 

set up by active transport of solutes, and 

isotonicity is 

maintained

• Since the 

ratio

of the concentration in tubular fluid to 

the concentration in plasma 

(TF/P) 

of the 

nonreabsorbable substance 

inulin

is 

2.5-3.3

at the end 

of the proximal tubule, it follows that 

60-70%

of the 

filtered solute and 

60-70%

of the filtered water have 

been removed by the time the filtrate reaches this 

point . 


background image

Reabsorption of various solutes in the proximal 

tubule. TF/P, tubular fluid:plasma concentration 

ratio.


background image

Changes in the percentage of the filtered amount of substances 

remaining in the tubular fluid along the length of the nephron in the 

presence of vasopressin.


background image

Loop of Henle

• As noted , the loops of Henle of the 

juxta-medullary

nephrons

dip deeply into the medullary pyramids before 

draining into the distal convoluted tubules in the cortex

and all of the collecting ducts descend back through the 

medullary pyramids to drain at the 

tips of the pyramids 

into 

the renal pelvis.

• There is a graded increase in the osmolality of the 

interstitium of the pyramids

, the osmolality at the tips of 

the papillae normally being about 

1200 mosm/kg of H

2

O

approximately 

four times 

that of plasma.

• The 

descending

limb of the loop of Henle is 

permeable

to 

water, but the 

ascending

limb is 

impermeable

• Na

+

, K

+

, and Cl

-

are cotransported out of the thick segment 

of the ascending limb .


background image

Loop of Henle

• Therefore, the fluid in the 

descending

limb of the 

loop of Henle becomes 

hypertonic

as water 

moves into the hypertonic interstitium.

• In the 

ascending

limb it becomes more 

dilute

and when it reaches the 

top it is hypotonic to 

plasma

because of the movement of Na

+

and Cl

-

out of the tubular lumen. 

• In passing through the loop of Henle, another 

15% of the filtered water is removed

, so 

approximately 20% of the filtered water enters 
the distal tubule, and the 

TF/P of inulin

at this 

point is about 

5


background image

Loop of Henle

• In the 

thick ascending 

limb, a carrier cotransports one Na

+

one K

+

, and 2 Cl

-

from the tubular lumen into the tubular 

cells.

• This is another example of 

secondary active transport

; the 

Na

+

is actively transported from the cells into the 

interstitium by 

Na

+

-K

+

ATPase

in the basolateral membranes 

of the cells, keeping the intracellular Na

+

low.

• The K

+

diffuses back 

into the tubular lumen and back into 

the interstitium via 

ROMK and other K

+

channels

.

• The Cl

-

diffuses into the interstitium via ClC-Kb channels . 

• This K

+

recycles across the luminal and the basolateral

membrane, while there is no transport of Na

+

and Cl

-

into 

the interstitium. 


background image

NaCl transport in the thick ascending limb of the loop of Henle. The 

Na

+

, K

+

2Cl

-

cotransporter moves these ions into the tubular cell by secondary active 

transport. Na

+

is transported out of the cell into the interstitium by 

Na

+

-K

+

ATPase

in the basolateral membrane of the cell. Cl

-

exits in basolateral ClC-Kb 

Cl

-

channels. 

Barttin

, a protein in the cell membrane, is essential for normal 

ClC-Kb function. 

K

+

moves from the cell to the interstitium and the tubular 

lumen by 

ROMK

and other K

+

channels. 


background image

Distal Tubule

• The distal tubule, particularly its first part, is in 

effect an 

extension of the thick segment 

of the 

ascending limb.

• It is relatively 

impermeable to water

, and 

continued removal of the solute in excess of 
solvent further dilutes the tubular fluid.

• About 

5%

of the filtered water is removed in 

this segment. 


background image

Collecting Ducts

• The collecting ducts have 

two portions

:

– a cortical portion and 
– a medullary portion. 

• The changes in osmolality and volume in the collecting 

ducts depend on the amount of 

vasopressin

acting on the 

ducts. 

• This 

antidiuretic hormone 

from the posterior pituitary 

gland increases the 

permeability

of the 

collecting ducts 

to 

water. 

• The key to the action of vasopressin on the collecting ducts 

is aquaporin-2.

• The effect is mediated via the 

vasopressin V

2

receptor, 

cyclic AMP

protein kinase A

, and 

a molecular motor

, one of 

the dyneins . 


background image

Collecting Ducts

• In the presence of 

enough vasopressin 

to produce maximal 

antidiuresis, water moves out of the hypotonic fluid 

entering the cortical collecting ducts into the interstitium of 

the cortex, and the tubular fluid becomes isotonic. 

• In this fashion

, as much as 

10%

of the filtered water is 

removed.

• The isotonic fluid then enters the medullary collecting 

ducts with a 

TF/P inulin

of about 

20

• An additional 4.7% or more of the filtrate is reabsorbed into 

the hypertonic interstitium of the medulla, producing a 

concentrated urine with 

a TF/P

inulin of over 

300

.

• In humans, the osmolality of urine may reach 

1400 

mosm/kg 

of H

2

O, almost 

five times 

the osmolality of 

plasma, with a total of 

99.7%

of the filtered water being 

reabsorbed  


background image

Collecting Ducts

• When 

vasopressin

is absent, the collecting duct epithelium is 

relatively impermeable to water. 

• The fluid therefore 

remains hypotonic

, and large amounts 

flow into the renal pelvis.

• In humans, the urine osmolality may be as low as 

30 

mosm/kg

of H

2

O. 

• The 

impermeability

of the distal portions of the nephron is 

not absolute

; along with the salt that is pumped out of the 

collecting duct fluid, about 

2%

of the filtered 

water

is 

reabsorbed

in the absence of vasopressin. 

• However, as much as 

13%

of the filtered water may be 

excreted, and urine flow may reach 

15 mL/min 

or more. 


background image

Role of Urea

• Urea contributes to the establishment of the 

osmotic gradient 

in the medullary pyramids and 

to the ability to form a concentrated urine in the 

collecting ducts. 

• Urea transport is mediated by 

urea transporters

presumably by 

facilitated diffusion

.

• The amount of urea in the 

medullary interstitium

and, consequently, in the urine varies with the 

amount of urea  , and this in turn varies with the 

dietary 

intake of protein

.

• Therefore, 

a high-protein diet 

increases the 

ability of the kidneys to 

concentrate the 

urine. 


background image

Water Diuresis

• The 

water diuresis

produced by drinking large 

amounts of hypotonic fluid begins about 

15 

minutes 

after ingestion of a water load and 

reaches its maximum in about 

40 minutes

• The 

act of drinking 

produces a small decrease 

in

vasopressin 

secretion before the water is 

absorbed, but most of the inhibition is 
produced 

by the decrease in plasma 

osmolality

after the water is absorbed. 


background image

Water Intoxication

• During excretion of an average osmotic load, the maximal 

urine flow that can be produced during a 

water diuresis is 

about 16 mL/min

.

• If water is ingested at a higher rate than this for any length 

of time, swelling of the cells because of the uptake of water 

from the hypotonic ECF becomes severe and, rarely, the 

symptoms of water intoxication

may develop.

• Swelling of the cells in the brain causes 

convulsions

and 

coma

and leads eventually to 

death

.

• Water intoxication can also occur when water intake is not 

reduced after administration of 

exogenous vasopressin 

or 

secretion of 

endogenous vasopressin 

in response to 

nonosmotic stimuli such as surgical trauma. 


background image

Osmotic Diuresis

• The presence of large quantities of 

unreabsorbed

solutes 

in the renal tubules causes an increase in 

urine volume called 

osmotic diuresis

.

• Solutes that are not reabsorbed in the proximal 

tubules exert an 

appreciable osmotic 

effect as the 

volume of tubular fluid decreases and their 
concentration rises. 

• Therefore, they "

hold water in the tubules

.“

• In addition, there is a limit to the concentration 

gradient against which Na

+

can be pumped out of 

the proximal tubules.


background image

• Normally, the movement of water out of the 

proximal tubule prevents any appreciable 
gradient from developing, but 

Na

+

concentration 

in the fluid falls when water 

reabsorption is decreased because of the 
presence in the tubular fluid of increased 
amounts of unreabsorbable solutes.

Osmotic Diuresis


background image

Osmotic Diuresis

• The 

limiting concentration gradient 

is 

reached, and further proximal reabsorption of 
Na

+

is prevented; more Na

+

remains in the 

tubule, and water stays with it. 

• The result is that the loop of Henle is 

presented with a greatly increased volume of 
isotonic fluid.


background image

Osmotic Diuresis

• This fluid has a 

decreased Na

+

concentration

, but 

the 

total amount of Na

+

reaching the loop per 

unit time is increased.

• In the loop, reabsorption of water and Na

+

is 

decreased because the 

medullary hypertonicity

is 

decreased

.

• The decrease is due primarily to 

decreased 

reabsorption of Na

+

, K

+

, and Cl

-

in the ascending 

limb of the loop because the limiting 
concentration gradient for Na

+

reabsorption is 

reached.


background image

More fluid passes 

through the distal tubule, 

and because of the decrease in the osmotic 
gradient along the medullary pyramids, 

less 

water is reabsorbed 

in the collecting ducts.

• The result is a marked increase in urine 

volume and excretion of Na

+

and other 

electrolytes. 

Osmotic Diuresis


background image

Osmotic Diuresis

• Osmotic diuresis is produced by the administration of 

compounds such as 

mannitol

and related 

polysaccharides that are 

filtered

but 

not reabsorbed

.

• It is also produced by 

naturally

occurring substances 

when they are present in amounts exceeding the 

capacity of the tubules 

to reabsorb them.

• In diabetes mellitus, for example, the 

glucose 

that 

remains in the tubules when the filtered load exceeds 
the 

Tm

G

causes 

polyuria

• Osmotic diuresis can also be produced by the infusion 

of large amounts of 

sodium chloride or urea. 


background image

Osmotic Diuresis

• It is important to recognize the difference between 

osmotic diuresis and water diuresis.

• In 

water diuresis

, the amount of water reabsorbed in 

the proximal portions of the nephron

is normal

, and 

the maximal urine flow that can be produced is about 

16 mL/min.

• In osmotic diuresis, increased urine flow is due to 

decreased water reabsorption

in the proximal tubules 

and loops and very large urine flows can be produced.

• As the load of excreted solute is increased, the 

concentration of the urine approaches that of plasma 

in spite of maximal vasopressin secretion, because an 

increasingly large fraction of the excreted urine 

is 

isotonic proximal tubular fluid


background image

Approximate relationship between urine concentration and urine 

flow in osmotic diuresis in humans. The dashed line in the lower 

diagram indicates the concentration at which the urine is 

isosmotic with plasma. 


background image

Relation of Urine Concentration to GFR

• The 

magnitude

of the 

osmotic gradient 

along the 

medullary pyramids is increased when the 

rate of 

flow 

of fluid through the loops of Henle is 

decreased

.

• A reduction in GFR such as that caused by 

dehydration 

produces a decrease in the volume 

of fluid presented to the countercurrent 

mechanism, so that the 

rate of flow 

in the loops 

declines and the urine becomes 

more 

concentrated

• When the GFR is low, the urine can become 

quite concentrated in the absence of 

vasopressin.


background image

Thank you




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام 3 أعضاء و 87 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل