background image

Physiology of nerve Fiber 

Lecture 2  

Continued 

 

 


background image

 

Properities of action potential

 

 

1 ) 

the threshold 

 It's the minimum intensity of stimulus needed to 
excite the neuron and produce an action 
potential. 

At sub threshold ( sub minimal) 

 

intensity, 

there is no action potential

 The threshold depends on : 

A ) type of the axon 

B ) temperature  

 


background image

2 ) self reinforcement  

 The action potential conducts 
electrical impulse   with the same 
strength along whole neuron nerve 
fiber ) 

without the need for external 

amount of energy 

 


background image

3)

The all or non law

 The action potential occur in a constant 
size (amplitude) and constant shape (form)  
regardless the strength of stimulation is at 
or above the threshold value
 and ,therefore 
,the action potential of single nerve fiber is 
independent on the stimulation energy 
above the threshold value and obey the all 
or non-law 

 


background image

• Once an action potential has been 

elicited at any point on the membrane of 
a normal fiber, the depolarization 
process travels over the entire 
membrane if conditions are right, or it 
does not travel at all if conditions are 
not right
. This is  also called the all-or-
nothing principle
, and it applies to all 
normal excitable tissues 


background image

4) 

the refractory period

The time interval during which the nerve 
fiber is incapable of firing or producing a 
second potential after the first one when 
the second stimulus is applied ( the period 
of beginning of depolarization until the 
end of the first third of repolarization 
,the 
membrane is completely refractory to 
further stimulation ) .this is called absolute 
refractory period 

 


background image

• No matter how strong the stimulus is 

applied , it can't induce second 
action potential ,the reason is that 
during this period almost all Na + 
channels are inactivated and no 
stimulation can reopen them

 


background image

 

Propagation of action potential 

  

 

An Action Potential  elicited at any 

point on the excitable membrane 
usually excites adjacent portion  of  
the membrane resulting in 
propagation of the A.P along the 
membrane
 .  


background image

 continuous conduction  in   Non 

myelinated  fibers 

 


background image

Saltatory

 Conduction in Myelinated 

Fibers from Node to Node. 

• Even though almost no ions can flow 

through the thick myelin sheaths of 
myelinated nerves, they can flow with 
ease through the nodes of Ranvier. 
Therefore, action potentials occur only 
at the nodes
. Yet the action potentials 
are conducted from node to node, as 
shown in  next Figure 


background image

background image

• This is called saltatory conduction 

That is, electrical current flows 
through the surrounding 
extracellular fluid outside the 
myelin sheath as well as through 
the axoplasm inside the axon 
from node to node, exciting 
successive nodes one after 
another. 


background image

• Thus, the nerve impulse jumps 

down the fiber, which is the 
origi  of the ter   saltatory.  
Saltatory conduction is of value 
for two reasons. 

First

by causing 

the depolarization process to 
jump long intervals along the 
axis of the nerve fiber
,  


background image

This mechanism increases the velocity of 

nerve transmission in myelinated fibers 
as much as 5- to 50-fold

Second

saltatory conduction conserves energy 
for the axon 
because only the nodes 
depolarize ,allowing perhaps 100 times 
less loss of ions than would be necessary 
,and therefore requiring little 
metabolism for reestablishing the 
sodium and potassium concentration 
differences 
across the membrane after a 
series of nerve impulses

 


background image

 

Velocity of Conduction in Nerve Fibers.

 

 

• The velocity of conduction in nerve 

fibers varies from as little as 0.25 
m/sec in very small unmyelinated 
fibers to as great as 100 m/sec (the 
length of a football field in 1 second) 
in very large myelinated fibers. 

 


background image

• Excitation—The Process of Eliciting the 

Action Potential 

• Any factor that causes sodium ions to 

begin to diffuse inward through the 
membrane in sufficient numbers can set 
off automatic regenerative opening of the 
sodium channels. This can result from 
mechanical disturbance of the membrane, 
chemical effects on the membrane, or 
passage of electricity through the 
membrane.  


background image

• All these are used at different points in the 

body to elicit nerve or muscle action 
potentials: 

1. Mechanical pressure to excite sensory nerve 

endings in the skin, 

2. Chemical neurotransmitters to transmit 

signals from one neuron to the next in the 
brain, and 

3. Electrical current to transmit signals between 

successive muscle cells in the heart and 
intestine. 


background image

  

Inhibition of 

E ita ilit “ta ilizers  

and Local Anesthetics 

 

In contrast to the factors that increase nerve 

excitability, still others, called membrane-
stabilizing factors, can decrease excitability. 
For instance, high extracellular fluid 
calcium ion concentration 
decreases 
membrane permeability to sodium 
ions 
and simultaneously reduces excitability. 
Therefore, calcium ions are said to be a 

stabilizer

.  


background image

 

Local Anesthetics.   

 

Among the most important stabilizers are 

the many substances used clinically as 
local anesthetics, including procaine and 
tetracaine. Most of these act directly on 
the activation gates of the sodium 
channels, making it much more difficult 
for these gates to open
, thereby 
reducing membrane excitability. 


background image

           

Electronic potentials  

 

Although 

sub threshold sti ulatio  does ’t 

produce action potentials, they affect the 
membrane potential called electronic potentials. 
These potentials can be recorded if we put the 
recording electrodes too close to the stimulation 

 


background image

These potentials 

characterized by 

1)    Local depolarizing potentials. 

2)  Non propagated. 

3)  Rise rapidly decay exponentially. 

4)  Produced by sub threshold. 

5)  Their size is proportional to the       
intensity of stimulation. 

 


background image

6) 

They are either : 

   A)  Cathodal : depolarizing potential leads to 
excitation 

   B)  Anodal : hyper polarizing , drag the   
membrane more (-ve) and causes inhibition  

Thus these fibers either excite or inhibit the 
potential of the membrane. Electronic potentials 
arise in CNS and eye where large no. of 
information sent between adjacent cells and 
allgebric summation of these potantials 
determine the excitability of the neuron.  


background image

Types of Nerve fibers

 

 


background image

Relative susceptility of mammalian A, B, & C nerve 

fibers to conduction block produce by various agents

 


background image

Nerve Injury 

In 1943,seddon described three 

basic types of peripheral nerve 
injury that include: 

• Neuropraxia (Class 1) 
• Axonotmesis (Class 2) 
• Neurotmesis (class 3) 


background image

background image

background image

1. Neurapraxia : It is a transient 

episode of 

motor paralysis

 with 

little or 

no sensory

 or 

autonomic

 dysfunction. 

Neurapraxia describes nerve 
damage in which there is no 
disruption of the nerve or its 
sheath.  


background image

• In this case there is an 

interruption in conduction of the 
impulse down the nerve fiber

and complete recovery takes 
place, &  

Wallerian degeneration

 

does not occur. 


background image

• This is the mildest form of nerve 

injury. This is probably a biochemical 
lesion caused by concussion or 
shock-like injuries to the fiber
. In 
the case of the role nerve, 
neurapraxia is brought about by 
compression or relatively mild, blunt 
blows, including some low-velocity 
missile injuries close to the nerve.  

 


background image

• There is a temporary loss of 

function which is reversible 
within hours to months 
of the 
injury ( the average is 6

–8 weeks) 

. There is frequently greater 
involvement of motor than 
sensory function with autonomic 
function being retained.  

 


background image

• The 

endoneurium

perineurium

, and the 

epineurium

 are intact. 

• In neuropraxia, conduction is intact in 

the distal segment and proximal 
segment, but no conduction occurs 
across the area of injury. 

• Recovery of nerve conduction deficit is 

full,and requires days to weeks. 

• EMG shows lack of fibrillation potentials 

(FP) and positive sharp waves. 

 


background image

2. Axonotmesis is a disruption of nerve 

cell axon, with 

wallerian 

degeneration

 occurring below and 

slightly proximal to the site of injury. 
If 

axons

, and thei

myelin sheath

 are 

damaged, but 

schwann cells

, the 

endoneurium

perineurium

 and 

epineurium

 remain intact is called 

axonotmesis 


background image

The prognosis is usually good in terms 

of recovery. Rate of recovery 
depends on the distance from the 
site of injury
, with axonal 
regeneration occurring at 1 to 4 
mm/day
. Peripheral nerves 
regeneration may take several 
months. 


background image

• Wallerian degeneration is a 

process that results when a 

nerve 

fiber

 is cut or crushed, in which 

the part of the 

axon

 separated 

from the 

neuron

's 

cell nucleus

 

degenerates. 


background image

• A related process known as 

'Wallerian like degeneration' occurs 
in many neurodegenerative diseases, 
especially those wher

axonal 

transport

 is impaired. 

Primary 

culture

 studies suggest that a failure 

to deliver sufficient quantities of the 
essential axonal protei

Nmnat2

 is a 

key initiating event. 


background image

Wallerian degeneration occurs after 

axonal injury in both the 

peripheral 

nervous system

 (PNS) and 

central 

Nervous System

 (CNS). It occurs in the 

axon stump distal to a site of injury and 
usually begins within 24-36 hours of a 
lesion. Prior to degeneration distal axon 
stumps tend to remain electrically 
excitable
. After injury, the axonal 
skeleton disintegrates and the axonal 
membrane breaks apart. 


background image

• The axonal degeneration is followed 

by degradation of the 

myelin sheath

 

and infiltration b

macrophages

. The 

macrophages, accompanied by 

Schwann cells

, serve to clear the 

debris from the degeneration 


background image

background image

 

• 3. Neurotmesis:-is a total disruption of 

the entire nerve fiber .A peripheral 
nerve fiber contains an axon (Or long 
dendrite),myelin sheath(if existence), 
their schwann cells, and the 
endoneurium. Neurotmesis may be 
partial or complete. 

 In this type of injury, both the 

nerve

 and 

the 

nerve sheath

 are disrupted. While 

partial recovery may occur, complete 
recovery is impossible 

 


background image

Other characteristics: 

• Wallerian degeneration occurs below 

to the site of injury. 

• There is connective tissue lesion that 

may be partial or complete. 

• Sensory-motor problems and 

autonomic function defect are 
severe. 

 


background image

• There is not nerve conduction 

distal to the site 0f injury (3 to 4 
days after lesion). 

• EMG and NCV findings are as 

axonotmesis. 

• Because of lack of nerve repair, 

surgical intervention is necessary. 


background image

    Wallerian  degeneration

 




رفعت المحاضرة من قبل: Ismail AL Jarrah
المشاهدات: لقد قام عضوان و 82 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل