مواضيع المحاضرة:
background image

background image

 Basic Anatomy 

69

sympathetic trunk

cut rib

cut costal 
cartilage

cut costal cartilage

azygos vein

intercostal nerve

right bronchi

pulmonary veins

greater splanchnic

nerve

inferior vena cava

right subclavian vein

right clavicle

right subclavius
muscle

internal thoracic
artery

superior vena cava

ascending aorta

right phrenic 
nerve

right atrium

right ventricle

right cupola of
diaphragm

ANTERIOR

FIGURE 3.16

 

ed. The 

Dissection of the right side of the mediastinum; the right lung and the pericardium have been remov

costal parietal pleura has also been removed.

left subclavian

artery

left common

carotid artery

arch of

aorta

pulmonary trunk

right ventricle

apex of heart

sympathetic
trunk

left vagus 
nerve

descending 
aorta

left auricle

left phrenic 
nerve

left cupola of 
diaphragm

left ventricle

ANTERIOR

FIGURE 3.17

 

e been removed. The costal 

Dissection of the left side of the mediastinum; the left lung and the pericardium hav

parietal pleura has also been removed.


background image

70

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

respiratory bronchiole

trachea

left principal bronchus

lobar bronchus

segmental bronchus

alveolar duct

alveolar sac

alveolus

terminal bronchiole

FIGURE 3.18

  Trachea, bronchi, bronchioles, alveolar ducts, alveolar sacs, and alveoli. Note the path taken by inspired air from 

 is found. The 

cardiac notch

here on the left lung that the 

 is thin and overlaps the heart; it is 

anterior border

The 

 enter and leave the lung.

root

form the 

depression in which the bronchi, vessels, and nerves that 

hilum,

3.21). At about the middle of this surface is the 

cardium and other mediastinal structures (Figs. 3.20 and 

 which is molded to the peri

mediastinal surface,

concave 

 which corresponds to the concave chest wall; and a 

face,

costal sur

 that sits on the diaphragm; a convex 

cave 

the neck for about 1 in. (2.5 cm) above the clavicle; a con

 which projects upward into 

apex,

Each lung has a blunt 

the trachea to the alveoli.

-

base

-

-

 a 

posterior border is thick and lies beside the vertebral  column.

oblique fissure in the midaxillary line. The middle lobe is 

surface at the level of the 4th costal cartilage to meet the 

 runs horizontally across the costal 

horizontal fissure

The 

posterior border about 2.5 in. (6.25 cm) below the apex. 

ward across the medial and costal surfaces until it cuts the 

 runs from the inferior border upward and back

fissure

oblique 

 (Fig. 3.20). The 

lower lobes

upper, middle,

by the oblique and horizontal fissures into three lobes: the 

The right lung is slightly larger than the left and is divided 

Lobes and Fissures

Right Lung

 and 

-


background image

 Basic Anatomy 

71

trachea

upper lobe of right lung

right principal 
bronchus

upper lobe of left lung

left principal 
bronchus

lower lobe
of left lung

lower lobe of right lung

bronchi in middle lobe of right lung
(dissected)

FIGURE 3.19

  A plastinized specimen of an adult trachea, 

of the trachea than the left main bronchus.

right main bronchus is wider and a more direct continuation 

been dissected to reveal the larger bronchi. Note that the 

principal bronchi, and lung; some of the lung tissue has 

apex

upper lobe

horizontal fissure

middle

lobe

oblique fissure

base

lower

lobe

apex

lower lobe

middle

lobe

upper lobe

FIGURE 3.20

  Lateral and medial surfaces of the right lung.

the blood within the surrounding capillaries.

the air in the alveolar lumen through the alveolar wall into 

of blood capillaries. Gaseous exchange takes place between 

and 3.23). Each alveolus is surrounded by a rich network 

of several alveoli opening into a single chamber (Figs. 3.22 

 The alveolar sacs consist 

alveolar sacs.

pouchings called 

lead into tubular passages with numerous thin-walled out

 which 

alveolar ducts,

bronchioles end by branching into 

a respiratory bronchiole is about 0.5 mm. The respiratory 

 The diameter of 

respiratory bronchiole.

explains the name 

air takes place in the walls of these outpouchings, which 

ings from their walls. Gaseous exchange between blood and 

 (Fig. 3.22), which show delicate outpouch

bronchioles

terminal 

The bronchioles then divide and give rise to 

circularly arranged smooth muscle fibers.

epithelium. The submucosa possesses a complete layer of 

cartilage in their walls and are lined with columnar ciliated 

are <1 mm in diameter (Fig. 3.22). Bronchioles possess no 

 which 

bronchioles,

smallest bronchi divide and give rise to 

cartilage, which become smaller and fewer in number. The 

in the trachea are gradually replaced by irregular plates of 

chi become smaller, the U-shaped bars of cartilage found 

mental bronchus divides repeatedly (Fig. 3.22). As the bron

On entering a bronchopulmonary segment, each seg

nerve supply.

Each segment has its own lymphatic vessels and autonomic 

tive tissue between adjacent bronchopulmonary segments. 

the tributaries of the pulmonary veins run in the connec

accompanied by a branch of the pulmonary artery, but 

connective tissue (Fig. 3.22). The segmental bronchus is 

 which is surrounded by 

bronchopulmonary segment,

functionally independent unit of a lung lobe called a 

Each segmental bronchus passes to a structurally and 

 (Fig. 3.18). 

segmental (tertiary) bronchi

branches called 

ary) bronchus, which passes to a lobe of the lung, gives off 

tional, and surgical units of the lungs. Each lobar (second

The bronchopulmonary segments are the anatomic, func

horizontal fissure in the left lung.

 (Fig. 3.21). There is no 

lower lobes

 and 

upper

lobes: the 

The left lung is divided by a similar oblique fissure into two 

Left Lung

oblique fissures.

thus a small triangular lobe bounded by the horizontal and 

Bronchopulmonary Segments

-
-

 

-

-
-

-

-

apex

apex

upper lobe

lower lobe

base

oblique

fissure

lower lobe

upper lobe

FIGURE 3.21

  Lateral and medial surfaces of the left lung.


background image

72

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

autonomic nerves

lymphatic vessel

pulmonary vein

terminal bronchiole

respiratory

bonchiole

alveolar sac

bronchopulmonary segment

segmental bronchus

alveolus

lung lobule

pulmonary artery

pulmonary vein in

intersegmental

connective tissue

FIGURE 3.22

  A bronchopulmonary segment and a lung lobule. Note that the pulmonary veins lie within the connective tissue 

The main characteristics of a bronchopulmonary 

septa that separate adjacent segments.

 segment may be summarized as follows:

3.15, 3.16, and 3.17).

pleura to the visceral pleura covering the lungs (Figs. 3.5, 

sheath of pleura, which joins the mediastinal parietal 

vessels, and nerves. The root is surrounded by a tubular 

chi, pulmonary artery and veins, lymph vessels, bronchial 

entering or leaving the lung. It is made up of the bron

 is formed of structures that are 

root of the lung

The 

pulmonary medicine or surgery.

to memorize the details unless one intends to specialize in 

nary segments is of clinical importance, it is unnecessary 

Although the general arrangement of the bronchopulmo

basal, lateral basal, posterior basal

 Superior (apical), medial basal, anterior 

Inferior lobe:

gular, inferior lingular

 Apical, posterior, anterior, superior lin

Superior lobe:

Left lung

basal, lateral basal, posterior basal

 Superior (apical), medial basal, anterior 

Inferior lobe:

 Lateral, medial

Middle lobe:

 Apical, posterior, anterior

Superior lobe:

Right lung

3.25) are as follows:

The main bronchopulmonary segments (Figs. 3.24 and 

removed surgically.

Because it is a structural unit, a diseased segment can be 

adjacent bronchopulmonary segments.

The segmental vein lies in the connective tissue between 

vessels, and autonomic nerves.

It has a segmental bronchus, a segmental artery, lymph 

It is surrounded by connective tissue.

root.

It is pyramid shaped, with its apex toward the lung 

It is a subdivision of a lung lobe.

-

-

-


background image

 Basic Anatomy 

73

FIGURE 3.23

  Scanning electron micrograph of the lung 

tesy of Dr. M. Koering.)

sions, or alcoves, along the walls of the alveolar sac. (Cour

showing numerous alveolar sacs. The alveoli are the depres-

-

upper lobe of
right lung

oblique
fissure

horizontal
fissure

middle lobe
of right lung

lower lobe
of right lung

lower lobe
of left lung

lower lobe
of left lung

oblique
fissure

cardiac
notch

upper lobe
of left lung

trachea

lateral
division
of middle

medial
division
of middle

anterior basal

inferior division
of lingular

superior division
of lingular

anterior

apical

apical

posterior

anterior

apical lower

lateral basal

anterior basal

B

A

FIGURE 3.24

  Lungs viewed from the right. 

 Bronchopulmonary segments.

 Lobes. 

A.

 

B.

upper lobe

of right lung

horizontal
fissure

middle lobe

of right lung

lower lobe

of right lung

oblique
fissure

cardiac

notch

lower lobe

of left lung

oblique
fissure

upper lobe

of left lung

trachea

apical

medial division
of middle

posterior

basal

anterior

basal

inferior division of lingular

lateral basal

superior division of lingular

apical lower

anterior

posterior

apical

A

B

lateral division

of middle

anterior

anterior

basal

FIGURE 3.25

  Lungs viewed from the left. 

bronchomediastinal lymph trunks.

then into the 

 and 

tracheobronchial nodes

the hilum and drains into the 

in the hilum of the lung. All the lymph from the lung leaves 

stance; the lymph then enters the bronchopulmonary nodes 

 located within the lung sub

pulmonary nodes

ing through 

and pulmonary vessels toward the hilum of the lung, pass

 travels along the bronchi 

deep plexus

 The 

monary nodes.

bronchopul

the hilum, where the lymph vessels enter the 

ceral pleura and drains over the surface of the lung toward 

 lies beneath the vis

superficial (subpleural) plexus

The 

uses (Fig. 3.26); they are not present in the alveolar walls. 

The lymph vessels originate in superficial and deep plex

Lymph Drainage of the Lungs

into the left atrium of the heart.

pulmonary veins leave each lung root (Fig. 3.15) to empty 

mental connective tissue septa to the lung root. Two 

taries of the pulmonary veins, which follow the interseg

blood leaving the alveolar capillaries drains into the tribu

nal branches of the pulmonary arteries. The oxygenated 

The alveoli receive deoxygenated blood from the termi

veins) drain into the azygos and hemiazygos veins.

bronchial veins (which communicate with the pulmonary 

arteries, which are branches of the descending aorta. The 

ceral pleura receive their blood supply from the bronchial 

The bronchi, the connective tissue of the lung, and the vis

chopulmonary segments.

 Lobes. 

A.

B. Bron-

Blood Supply of the Lungs

-

-

-
-

-

-

-

-
-


background image

74

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

tracheobronchial nodes

bronchopulmonary nodes

pulmonary nodes

deep lymphatic plexus

superficial lymphatic plexus

celiac nodes

left recurrent laryngeal nerve

bronchomediastinal trunk

FIGURE 3.26

  Lymph drainage of the lung and lower end of the esophagus.

and decrease of the capacity of the thoracic cavity. The rate 

ration—which are accomplished by the alternate increase 

Respiration consists of two phases—inspiration and expi

parasympathetic nerves.

pass to the central nervous system in both sympathetic and 

membrane and from stretch receptors in the alveolar walls 

Afferent impulses derived from the bronchial mucous 

increased glandular secretion.

fibers produce bronchoconstriction, vasodilatation, and 

tion and vasoconstriction. The parasympathetic efferent 

The sympathetic efferent fibers produce bronchodilata

receives parasympathetic fibers from the vagus nerve.

is formed from branches of the sympathetic trunk and 

of efferent and afferent autonomic nerve fibers. The plexus 

 composed 

pulmonary plexus

At the root of each lung is a 

Nerve Supply of the Lungs

-

The Mechanics of Respiration

-

Development of the Lungs and Pleura

the permanent opening into the larynx. The laryngotracheal tube 

and the epithelium of the alveoli develop from this groove. The 

A longitudinal groove develops in the entodermal lining of the 

floor of the pharynx. This groove is known as the laryngotra-
cheal groove.
 The lining of the larynx, trachea, and bronchi 

margins of the groove fuse and form the laryngotracheal tube 

(Fig. 3.27). The fusion process starts distally so that the lumen 

becomes separated from the developing esophagus. Just behind 

the developing tongue, a small opening persists that will become 

grows caudally into the splanchnic mesoderm and will eventually 

lie anterior to the esophagus. The tube divides distally into the 

(continued)

E M B R Y O L O G I C   N O T E S


background image

 Basic Anatomy 

75

right and left 

ferent types of atresia, with and without fistula, are shown in 

formed from somatic mesoderm. By the seventh month, the 

 derived 

visceral pleura

Each lung will receive a covering of 

ects into the pleural part of the embryonic coelom (Fig. 3.27). The 

surrounding the tube, and the upper part of the tube becomes 

lung buds. Cartilage develops in the mesenchyme 

the larynx, whereas the lower part becomes the trachea.

Each lung bud consists of an entodermal tube surrounded 

by splanchnic mesoderm; from this, all the tissues of the corre-

sponding lung are derived. Each bud grows laterally and proj-

lung bud divides into three lobes and then into two, correspond-

ing to the number of main bronchi and lobes found in the fully 

developed lung. Each main bronchus then divides repeatedly in 

a dichotomous manner, until eventually the terminal bronchioles 

and alveoli are formed. The division of the terminal bronchioles, 

with the formation of additional bronchioles and alveoli, contin-

ues for some time after birth.

from the splanchnic mesoderm. The parietal pleura will be 

capillary loops connected with the pulmonary circulation have 

become sufficiently well developed to support life, should pre-

mature birth take place. With the onset of respiration at birth, the 

lungs expand and the alveoli become dilated. However, it is only 

after 3 or 4 days of postnatal life that the alveoli in the periphery 

of each lung become fully expanded.

Congenital Anomalies
Esophageal Atresia and Tracheoesophageal Fistula
If the margins of the laryngotracheal groove fail to fuse ade-

quately, an abnormal opening may be left between the laryn-

gotracheal tube and the esophagus. If the tracheoesophageal 

septum formed by the fusion of the margins of the laryngo-

tracheal groove should be deviated posteriorly, the lumen of 

the esophagus would be much reduced in diameter. The dif-

Figure 3.28. Obstruction of the esophagus prevents the child from 

early diagnosis, it is often possible to correct this serious anom

larynx and trachea, which usually results in pneumonia. With 

swallowing saliva and milk, and this leads to aspiration into the 

-

aly surgically.

brain

pharynx

mouth

pericardial cavity

copula

laryngotracheal tube

pharynx

laryngotracheal tube

esophagus

trachea

visceral pleura

lung bud

parietal pleura

A

B

C

D

FIGURE 3.27

  The development of the lungs. 

 The lung buds divide to form the main bronchi.

 The lung buds invaginate the wall of the intraembryonic 

the laryngotracheal groove fuse to form the laryngotracheal tube. 

 The margins of 

 The laryngotracheal groove and tube have been formed. 

A.

B.

C.

coelom. D.


background image

76

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

esophagus

trachea

fistula

diaphragm

A

B

C

D

E

F

G

FIGURE 3.28

  Different types of esophageal atresia and tracheoesophageal fistula. 

nal viscera and the tone of the muscles of the anterior 

the effect of the descent of the diaphragm on the abdomi

An additional factor that must not be overlooked is 

(Fig. 3.10).

the other ribs to it by contracting the intercostal muscles 

this can be accomplished by fixing the 1st rib and raising 

thoracic cavity will be increased. As described previously, 

raised (like bucket handles), the transverse diameter of the 

dles (see Fig. 3.29). It therefore follows that if the ribs are 

as forward around the chest wall, they resemble bucket han

vertebral column. Because the ribs curve downward as well 

the sternum via their costal cartilages and behind with the 

 The ribs articulate in front with 

Transverse Diameter

the first rib.

means, all the ribs are drawn together and raised toward 

contracting the intercostal muscles (Fig. 3.10). By this 

by the contraction of the scaleni muscles of the neck and 

(Fig. 3.29). This can be brought about by fixing the 1st rib 

the lower end of the sternum would be thrust forward 

diameter of the thoracic cavity would be increased and 

ribs were raised at their sternal ends, the anteroposterior 

 If the downward-sloping 

Anteroposterior Diameter

diaphragm is lowered (Fig. 3.29).

contracts, the domes become flattened and the level of the 

is formed by the mobile diaphragm. When the diaphragm 

suprapleural membrane and is fixed. Conversely, the floor 

raised and the floor lowered. The roof is formed by the 

 Theoretically, the roof could be 

Vertical Diameter

and how they may be increased (Fig. 3.29).

Consider now the three diameters of the thoracic cavity 

sure entering the box through the tube.

diameters, and this results in air under atmospheric pres

capacity of the box can be increased by elongating all its 

 (Fig. 3.29). The 

trachea

at the top, which is a tube called the 

Compare the thoracic cavity to a box with a single entrance 

Inspiration

patients and is faster in children and slower in the elderly.

varies between 16 and 20 per minute in normal resting 

cases, the lower esophageal segment communicates with the trachea, and types A and B occur more commonly.

 Narrowing of the esophagus without a fistula. In most 

 Separate esophagotracheal and tracheoesophageal fistulas. 

 An esophagotracheal fistula; the esophagus is not connected with the distal end, which is rudimentary. 

 A tracheoesophageal fistula with narrowing of 

 Complete blockage of the esophagus; the distal end is rudimentary. 

 Similar to type A, but the two parts of the esophagus are joined together by fibrous tis

with a tracheoesophageal fistula. 

 Complete blockage of the esophagus 

A.

B.

-

sue. C.

D.

the esophagus. E.

 

F.

G.

Quiet Inspiration

-

 

 

-

-

abdominal wall. As the diaphragm descends on  inspiration, 

the diaphragm will now have its central tendon supported 

further diaphragmatic descent. On further contraction, 

other upper abdominal viscera act as a platform that resists 

further abdominal relaxation is possible, and the liver and 

nal wall musculature. However, a point is reached when no 

accommodated by the reciprocal relaxation of the abdomi

intra-abdominal pressure rises. This rise in pressure is 

-


background image

 Basic Anatomy 

77

expanding thoracic cavity

bucket handle action

lateral expansion

descent of diaphragm

anteroposterior expansion

expanding box

FIGURE 3.29

  The different ways in which the capacity of the 

supported by grasping a chair back or table, the sternal 

lis minor to pull up the ribs. If the upper limbs can be 

muscles, enabling the serratus anterior and the pectora

are fixed by the trapezius, levator scapulae, and rhomboid 

already engaged becomes more violent, and the scapulae 

toid. In respiratory distress, the action of all the muscles 

scalenus anterior and medius and the sternocleidomas

can raise the ribs is brought into action, including the 

capacity of the thoracic cavity occurs. Every muscle that 

In deep forced inspiration, a maximum increase in the 

Forced Inspiration

serratus posterior superior muscles.

muscles

levatores costarum 

assist in elevating the ribs, namely, the 

less important muscles also contract on inspiration and 

Apart from the diaphragm and the intercostals, other 

intercostal muscles in raising the lower ribs (Fig. 3.10).

from below, and its shortening muscle fibers will assist the 

thoracic cavity is increased during inspiration.

 and the 

-

-

origin of the  

oralis major muscles can also assist the 

pect

abdominal form.

racic and abdominal forms of respiration, but mainly the 

 The male uses both the tho

thoracic type of respiration.

the diaphragm on inspiration. This is referred to as the 

the movements of the ribs rather than on the descent of 

piratory movements. The female tends to rely mainly on 

In the adult, a sexual difference exists in the type of res

oblique, and the adult form of respiration is established.

After the second year of life, the ribs become more 

abdominal type of respiration.

is easily seen, respiration at this age is referred to as the 

outward excursion of the anterior abdominal wall, which 

tion. Because this is accompanied by a marked inward and 

diaphragm to increase their thoracic capacity on inspira

tal. Thus, babies have to rely mainly on the descent of the 

In babies and young children, the ribs are nearly horizon

Types of Respiration

a higher level.

size. The lower margins of the lungs shrink and rise to 

and the costodiaphragmatic recess becomes reduced in 

matic and costal parietal pleura come into apposition, 

ment of the diaphragm, increasing areas of the diaphrag

lungs become reduced in size. With the upward move

contract. The elastic tissue of the lungs recoils, and the 

the bifurcation of the trachea. The bronchi shorten and 

In expiration, the roots of the lungs ascend along with 

minor role.

inferior and the latissimus dorsi muscles may also play a 

the lowered 12th rib (Fig. 3.10). The serratus posterior 

may contract, pull the ribs together, and depress them to 

under these circumstances some of the intercostal muscles 

tracts and pulls down the 12th rib. It is conceivable that 

rior abdominal wall. The quadratus lumborum also con

the forcible contraction of the musculature of the ante

Forced expiration is an active process brought about by 

Forced Expiration

ing down the lower ribs.

 play a minor role in pull

ratus posterior inferior muscles

ser

wall, which forces the relaxing diaphragm upward. The 

increase in tone of the muscles of the anterior abdominal 

tion of the intercostal muscles and diaphragm, and an 

brought about by the elastic recoil of the lungs, the relaxa

Quiet expiration is largely a passive phenomenon and is 

Expiration

lower level.

the expanding sharp lower edges of the lungs descend to a 

costodiaphragmatic recess of the pleural cavity opens, and 

nective tissue are stretched. As the diaphragm descends, the 

the lungs, the elastic tissue in the bronchial walls and con

increased capacity of the thoracic cavity. With expansion of 

sure on the outer surface of the lungs brought about by the 

upper part of the respiratory tract and the negative pres

of the positive atmospheric pressure exerted through the 

circulation. Air is drawn into the bronchial tree as the result 

alveolar capillaries dilate, thus assisting the pulmonary 

as two vertebrae. The bronchi elongate and dilate and the 

the bifurcation of the trachea may be lowered by as much 

In inspiration, the root of the lung descends and the level of 

process.

Lung Changes on Inspiration

-

-

Quiet Expiration

-

-
-

-
-

Lung Changes on Expiration

-
-

-

-

-

-


background image

78

  CHAPTER 3

 

The Thorax: Part II—The Thoracic Cavity

Physical Examination of the Lungs

is often quickly followed by infection. To aid in the normal drain

Excessive accumulation of bronchial secretions in a lobe or seg

 and 

Many diseases of the lungs, such as 

ther impeded by the presence of excess mucus, which the patient 

racic cage becomes permanently enlarged, forming the so-called 

ficulty in expiring, although inspiration is accomplished normally. 

tion, usually causing the asthmatic patient to experience great dif

spasm of the smooth muscle in the wall of the bronchioles. This 

One of the problems associated with bronchial asthma is the 

the lower deep cervical nodes just above the level of the clavicle. 

the bronchomediastinal trunks may result in early involvement in 

nerves, leading to hoarseness of the voice. Lymphatic spread via 

bronchomediastinal nodes and may involve the recurrent laryngeal 

lung. The neoplasm rapidly spreads to the tracheobronchial and 

larger bronchi and is therefore situated close to the hilum of the 

commences in most patients in the mucous membrane lining the 

deaths in men and is becoming increasingly common in women. It 

Bronchogenic carcinoma accounts for about one third of all cancer 

benign neoplasm may require surgical removal. If it is restricted 

costal cartilages are sufficiently elastic to permit considerable 

retractors that allow the ribs to be widely separated are used. The 

taken through an intercostal space (see page 46). Special rib 

shoulder because the skin of this region is supplied by the supra

nerve endings, so that pain in the chest is always the result of 

visceral pleura until it reaches the lung root. It then passes into the 

the lung connective tissue. From there, the air moves under the 

pneumothorax and collapse of the lung. It can also find its way into 

the lung, and air can escape into the pleural cavity, causing a 

cage, a splinter from a fractured rib can nevertheless penetrate 

Although the lungs are well protected by the bony thoracic 

For physical examination of the patient, it is helpful to remember 

that the upper lobes of the lungs are most easily examined from 

the front of the chest and the lower lobes from the back. In the 

axillae, areas of all lobes can be examined.

Trauma to the Lungs

A physician must always remember that the apex of the lung 

projects up into the neck (1 in. [2.5 cm] above the clavicle) and 

can be damaged by stab or bullet wounds in this area.

mediastinum and up to the neck. Here, it may distend the subcu-

taneous tissue, a condition known as subcutaneous emphysema.

The changes in the position of the thoracic and upper abdom-

inal viscera and the level of the diaphragm during different 

phases of respiration relative to the chest wall are of consider-

able clinical importance. A penetrating wound in the lower part 

of the chest may or may not damage abdominal viscera, depend-

ing on the phase of respiration at the time of injury.

Pain and Lung Disease
Lung tissue and the visceral pleura are devoid of pain-sensitive 

conditions affecting the surrounding structures. In tuberculosis 

or pneumonia, for example, pain may never be experienced.

Once lung disease crosses the visceral pleura and the pleural 

cavity to involve the parietal pleura, pain becomes a prominent 

feature. Lobar pneumonia with pleurisy, for example, produces a 

severe tearing pain, accentuated by inspiring deeply or cough-

ing. Because the lower part of the costal parietal pleura receives 

its sensory innervation from the lower five intercostal nerves, 

which also innervate the skin of the anterior abdominal wall, 

pleurisy in this area commonly produces pain that is referred to 

the abdomen. This has sometimes resulted in a mistaken diagno-

sis of an acute abdominal lesion.

In a similar manner, pleurisy of the central part of the dia-

phragmatic pleura, which receives sensory innervation from the 

phrenic nerve (C3, 4, and 5), can lead to referred pain over the 

-

clavicular nerves (C3 and 4).

Surgical Access to the Lungs

Surgical access to the lung or mediastinum is commonly under-

bending. Good exposure of the lungs is obtained by this method.

Segmental Resection of the Lung

A localized chronic lesion such as that of tuberculosis or a 

to a bronchopulmonary segment, it is possible carefully to dis-

sect out a particular segment and remove it, leaving the sur-

rounding lung intact. Segmental resection requires that the 

radiologist and thoracic surgeon have a sound knowledge of the 

bronchopulmonary segments and that they cooperate fully to 

localize the lesion accurately before operation.

Bronchogenic Carcinoma

Hematogenous spread to bones and the brain commonly occurs.

Conditions That Decrease Respiratory Efficiency

Constriction of the Bronchi (Bronchial Asthma)

particularly reduces the diameter of the bronchioles during expira-

-

The lungs consequently become greatly distended and the tho-

barrel chest. In addition, the air flow through the bronchioles is fur-

is unable to clear because an effective cough cannot be produced.

Loss of Lung Elasticity

emphysema

pulmonary 

fibrosis, destroy the elasticity of the lungs, and thus the lungs are 

unable to recoil adequately, causing incomplete expiration. The 

respiratory muscles in these patients have to assist in expiration, 

which no longer is a passive phenomenon.

Loss of Lung Distensibility
Diseases such as silicosis, asbestosis, cancer, and pneumonia 

interfere with the process of expanding the lung in inspiration.  

A decrease in the compliance of the lungs and the chest wall 

then occurs, and a greater effort has to be undertaken by the 

inspiratory muscles to inflate the lungs.

Postural Drainage

-

ment of a lung can seriously interfere with the normal flow of air 

into the alveoli. Furthermore, the stagnation of such secretions 

-

age of a bronchial segment, a physiotherapist often alters the 

position of the patient so that gravity assists in the process of 

drainage. Sound knowledge of the bronchial tree is necessary to 

determine the optimum position of the patient for good postural 

drainage.

C L I N I C A L   N O T E S


background image

 Basic Anatomy 

that closely covers the heart (Fig. 3.32).

continuous with the visceral layer of serous pericardium 

reflected around the roots of the great vessels to become 

 lines the fibrous pericardium and is 

parietal layer

The 

(Fig. 3.31).

coats the heart. It is divided into parietal and visceral layers 

The serous pericardium lines the fibrous pericardium and 

nopericardial ligaments.

ster

pericardium is attached in front to the sternum by the 

cavae, and the pulmonary veins (Fig. 3.32). The fibrous 

the pulmonary trunk, the superior and inferior venae 

vessels passing through it (Fig. 3.31)—namely, the aorta, 

diaphragm. It fuses with the outer coats of the great blood 

sac. It is firmly attached below to the central tendon of the 

The fibrous pericardium is the strong fibrous part of the 

vertebrae.

costal cartilages and anterior to the 5th to the 8th thoracic 

terior to the body of the sternum and the 2nd to the 6th 

middle mediastinum (Figs. 3.2, 3.30, 3.31, and 3.32), pos

of the heart can contract. The pericardium lies within the 

serve as a lubricated container in which the different parts 

restrict excessive movements of the heart as a whole and to 

heart and the roots of the great vessels. Its function is to 

The pericardium is a fibroserous sac that encloses the 

79

Pericardium

-

Fibrous Pericardium

-

Serous Pericardium

right common
carotid artery

right subclavian
artery and vein

brachiocephalic
artery

right brachiocephalic
vein
superior vena
cava

right lung

pericardium

diaphragm

left lung

left
brachiocephalic
vein

left subclavian
artery and vein

left common carotid artery

esophagus

trachea

FIGURE 3.30

  The pericardium and the lungs exposed from 

in front.

parietal layer of
serous pericardium

visceral layer of serous
pericardium (epicardium)

fibrous pericardium

large blood vessel

heart

pericardial cavity

FIGURE 3.31

  Different layers of the pericardium.

apex, which is directed downward, forward, and to the left.

phragmatic (inferior), and a base (posterior). It also has an 

The heart has three surfaces: sternocostal (anterior), dia

pericardium.

the great blood vessels but otherwise lies free within the 

astinum (Figs. 3.33 and 3.34). It is connected at its base to 

amid shaped and lies within the pericardium in the medi

The heart is a hollow muscular organ that is somewhat pyr

branches of the sympathetic trunks and the vagus nerves.

ceral layer of the serous pericardium is innervated by 

pericardium are supplied by the phrenic nerves. The vis

The fibrous pericardium and the parietal layer of the serous 

page 91). They have no clinical significance.

sequence of the way the heart bends during development 
(see 

large veins (Fig. 3.32). The pericardial sinuses form as a con

the aorta and pulmonary trunk and the reflection around the 

that lies between the reflection of serous pericardium around 

 which is a short passage 

transverse sinus,

of the heart is the 

 (Fig. 3.32). Also on the posterior surface 

oblique sinus

serous pericardium around the large veins forms a recess called 

On the posterior surface of the heart, the reflection of the 

which acts as a lubricant to facilitate movements of the heart.

pericardial fluid,

amount of tissue fluid (about 50 mL), the 

 (Fig. 3.31). Normally, the cavity contains a small 

cavity

pericardial 

parietal and visceral layers is referred to as the 

 The slitlike space between the 

epicardium.

often called the 

 is closely applied to the heart and is 

visceral layer

The 

 

Pericardial Sinuses

the 

-

 

Nerve Supply of the Pericardium

-

Heart

-
-

Surfaces of the Heart

-




رفعت المحاضرة من قبل: Mostafa Altae
المشاهدات: لقد قام 4 أعضاء و 60 زائراً بقراءة هذه المحاضرة








تسجيل دخول

أو
عبر الحساب الاعتيادي
الرجاء كتابة البريد الالكتروني بشكل صحيح
الرجاء كتابة كلمة المرور
لست عضواً في موقع محاضراتي؟
اضغط هنا للتسجيل